Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae)

  • N. N. Ntonifor
  • I. Mueller-HarveyEmail author
  • H. F. Van Emden
  • R. H. Brown


The antifeedant activities of Piper guineense Schum et Thonn (Piperaceae), Aframomum melegueta (Rosk) K. Schum (Zingiberaceae), Aframomum titration (Pareira) K. Schum (Zingiberaceae) and Afrostyrax kamerunensis Perkins and Gilg (Huaceae) seed extracts were investigated in laboratory dual- and no-choice bioassays using third-instar Spodoptera littoralis (Boisduval) larvae. In the dual-choice test, the hexane and methanol extracts of A. melegueta showed potent dose-dependent antifeedant activity at concentrations of ≥300 ppm and the water extract at ≥ 500 ppm, as illustrated by significantly lower leaf consumptions. Aframomum citratum methanol and water extracts exhibited antifeedant activity at ≥300 and ≥ 1000 ppm, respectively, but the hexane and ethanol extracts did not affect feeding at any concentration. Piper guineense ethanol and water extracts showed dose-dependent antifeedant effects at ≥300 and ≥ 500 ppm, respectively, and the methanol extract was active only at 1000 ppm. None of the extracts of the highly aromatic A. kamerunensis exhibited antifeedant activity at any of the tested concentrations. In the no-choice bioassays, extracts with antifeedant activity in the dual-choice tests also showed dose-dependent feeding inhibition. The hexane and methanol extracts of A. melegueta were effective in the no-choice tests at ≥ 100 and ≥ 500 ppm, respectively, and the water extract at ≥ 300 ppm. Similarly, the A. citratum water and methanol extracts were active at ≥ 500 ppm and the P. guineense water and ethanol extracts at ≥ 100 ppm. GC/MS chromatography of A. melegueta hexane and methanol extracts revealed volatile constituents with known anti-insect activity. The hexane and methanol extracts of A. melegueta, the methanol extract of A. citratum and the water and ethanol extracts of P. guineense may have potential for use by subsistence farmers.

Key words

Piper guineense Aframomum melegueta Aframomum citratum Afrostyrax kamerunensis seed extracts botanical insecticide Spodoptera littoralis 

Mots clés

Piper guineense Aframomum melegueta Aframomum citratum Afrostyrax kamerunensis extraits de graines insecticide naturel Spodoptera littoralis 


Les activités anti-appétantes des extraits de graines de Piper guineense Schum et Thonn (Piperaceae), Aframomum melegueta (Rosk) K. Schum (Zingiberaceae), Aframomum citratum (Pareira) K. Schum (Zingiberaceae) et d’Afrostyrax kamerunensis Perkins et Gilg (Huaceae) ont été étudiés au laboratoire en situation de choix et de non-choix sur des larves de 3ème stade de Spodoptera littoralis (Boisduval). En situation de choix, les extraits à l’hexane et au méthanol de A. melegueta montrent une activité anti-appétante fortement dépendante des concentrations lorsqu’elles sont ≥ 300 ppm tout comme l’extrait aqueux à une concentration ≥ 500 ppm, comme l’indique la faible consommation des feuilles. Les extraits au méthanol et aqueux d’Aframomum citratum ont une action anti-appétante à des concentrations ≥ 300 et ≥ 1000 ppm respectivement, alors que les extraits à l’héxane et au méthanol n’ont aucun effet. Les extraits à l’éthanol et aqueux de Piper guineense ont des effets anti-appétants dépendants des concentrations lorsqu’elles sont ≥ 300 et ≥ 500 ppm respectivement alors que l’extrait au méthanol est actif seulement à 1000 ppm. Aucun des extraits du très aromatique A. kamerunensi ne montrent d’effet anti-appétants quelque soit la concentration. Nous avons également testé en situation de non-choix, les extraits ayant montré des effets dépendants de la concentration en situation de choix. Les extraits à l’hexane et au méthanol de A. melegueta sont efficaces en situation de non-choix aux concentrations ≥ 100 et ≥ 500 ppm respectivement, et l’extrait aqueux à une concentration ≥ 300 ppm. De même, les extraits aqueux et au méthanol d’A. citratum sont actifs à des concentrations ≥ 500 ppm et les extraits aqueux et à l’éthanol de P. guineense à une concentration ≥ 100 ppm. Une Chromatographie GC/MS des extraits à l’hexane et au méthanol d’ A. melegueta révèle l’existence de composés volatils ayant des activités insecticides connues. Les extraits à l’éthanol de A. melegueta, au méthanol de A. citratum et aqueux et à l’éthanol de P. guineense pourraient être utilisés par des fermiers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265–267.CrossRefGoogle Scholar
  2. Ashamo M. O. and Odeyemi O. O. (2001) Protection of maize against Sitophilus zeamais Motsch using seed extracts from some indigenous plants. Journal of Plant Disease Protection 108, 320–327.Google Scholar
  3. Ayafor J. F., Tchuendem M. H. K. and Nyasse B. (1994) Novel bioactive diterpenoids from Aframomum aulacocarpos. Journal of Natural Products 57, 917–923.CrossRefGoogle Scholar
  4. Balick M. J. and Cox P. A. (1996) Plants, People and Culture: The Science of Ethnobotany. Scientific American Library, New York. 106 pp.Google Scholar
  5. Brown R. H. and Mueller-Harvey I. (1999) Evaluation of the novel Soxflo technique for rapid extraction of crude fat in foods and animal feeds. Journal of AOAC International 82, 1369–1374.PubMedGoogle Scholar
  6. Dorman H. J. D. and Deans S. G. (2000) Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88, 308–316.CrossRefGoogle Scholar
  7. Escoubas P., Lajide L. and Mizutani J. (1995) Termite antifeedant activity in Aframomum melegueta. Phyto-chemistry 40, 1097–1099.Google Scholar
  8. Fuskushima J., Yatagai M. and Ohira T. (2002) Abietane-type and labdane-type diterpenoids from the cones of Chamaecyparis obtusa. Journal of Wood Science 48, 326–330.CrossRefGoogle Scholar
  9. Ivbijaro M. F. (1990) The efficacy of seed oils of Azadirachta indica A. Juss and Piper guineense Schum and Thonn on the control of Callosobruchus maculatus F. Insect Science and Its Application 11, 149–152.Google Scholar
  10. Ivbijaro M. R and Agbaje M. (1986) Insecticidal activities of Piper guineense Schum and Thonn and Capsicum species on the cowpea bruchid, Callosobruchus maculatus F. Insect Science and Its Application 4, 521–524.Google Scholar
  11. Jacobson M. (1989) Botanical pesticides, past, present and future, pp. 1–10. In Insecticides of Plant Origin (Edited by J. T. Arnason, B. J. R. Philogene and P. Morand). ACS Symposium Series 387, Washington, DC.Google Scholar
  12. Kéita S. M., Vincent C., Schmit J.-P, Arnason J. T. and Belanger A. (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. Journal of Stored Products Research 37, 339–349.CrossRefGoogle Scholar
  13. Larson R. O. (1989) The commercialisation of neem, pp. 155–168. In The Neem Tree: Focus on Phytochemical Pesticides (Edited by Jacobson M.). CRC Press, Boca Raton, Florida.Google Scholar
  14. Lewis A. C. and van Emden H. F. (1986) Assays for insect feeding, pp. 95–119. In Insect-Plant Interactions (Edited by J. R. Miller and T. A. Miller). Springer Verlag, New York.CrossRefGoogle Scholar
  15. Leatemia J. A. and Isman M. B. (2004) Toxicity and antifeedant activity of crude seed extracts of Annona squamosa (Annonaceae) against lepidopteran pests and natural enemies. International Journal of Tropical Insect Science 24, 150–158.CrossRefGoogle Scholar
  16. McLaughlin J. L., Zeng L., Oberlies N. H., Alfonso D., Johnson H. A. and Cummings B. B. (1997) Annonaceae acetogenins as new natural pesticides: Recent progress, pp. 117–130. In Phytochemical Pest Control Agents (Edited by P. Hedin, R. Hollingworth, J. Mujamoto, E. Mesler and D. Thompson). ACS Symposium Series 658, Washington, DC.CrossRefGoogle Scholar
  17. Miyakado M., Nakayama I. and Onho N. (1989) Insecticidal unsaturated isobutylamides: From natural products to agrochemical leads, pp. 173–187. In Insecticides of Plant Origin (Edited by J. T. Arnason, B. J. R. Philogene and P. Morand). ACS Symposium Series 387, Washington, DC.CrossRefGoogle Scholar
  18. Ntonifor N. N. and Monah I. M. (2001) Use of three spices to protect stored maize against Sitophilus zeamais. Tropical Science, 41, 74–77.Google Scholar
  19. Ntonifor N. N., Brown R. H. and Mueller-Harvey I. (2002) Advantages of Soxflo extractions for phytochemical analysis and bioassay screening: 1. Terpenoids. Journal of Agricultural and Pood Chemistry 50, 6295–6300.CrossRefGoogle Scholar
  20. Nyasse B. and Lenta-Ndjakou B. (2000) Aframodial, a labdane diterpene showing selective in vitro antileukemic activity. Pharmazie 55, 703–704.PubMedGoogle Scholar
  21. Parmar V. S., Jain S. C, Bisht K. S., Jain R., Taneja P., Jha A., Tyagi O. M., Prasad A. K., Wengel J., Olsen C. E. and Boll P. M. (1997) Phytochemistry of the genus Piper. Phytochemistry 46, 597–673.CrossRefGoogle Scholar
  22. Scott W. P. and McKibben G. H. (1978) Toxicity of black pepper extract to weevils. Journal of Economic Entomology 71, 343–344.CrossRefGoogle Scholar
  23. Simmonds M. S. J. (2000) Molecular- and chemo-systematics: Do they have a role in agrochemical discovery? Crop Protection 19, 591–596.CrossRefGoogle Scholar
  24. Simmonds M. S. J., Evans H. C. and Blaney W. M. (1992) Pesticides for the year 2000: Mycochemicals and botanicals, pp. 127–164. In Pest Management and Environment in 2000 (Edited by A. Aziz, S. A. Kadir and H. S. Barlow). CAB International, Wallingford, Oxon.Google Scholar
  25. Stoll G. (2000) Natural Crop Protection in the Tropics: Letting Information Come to Life. Margraf Verlag, Hohberg. 376 pp.Google Scholar
  26. Tomla C., Kamnaing P., Ayimele G. A., Tanifum E. A., Tsopmo A., Tane P., Ayafor J. E and Connolly J. D. (2002) Three labdane diterpenoids from Aframomum sceptrum (Zingiberaceae). Phytochemistry 60, 197–200.CrossRefGoogle Scholar
  27. Tsopmo A., Ayimele G. A., Tane P., Ayafor J. E, Connolly J. D. and Sterner O. (2002) A norbislabdane and other labdanes from Aframomum sulcatum. Tetrahedron 58, 2725–2728.CrossRefGoogle Scholar
  28. Udo I. O. (2005) Evaluation of the potential of some local spices as stored grain protectants against the maize weevil Sitophilus zeamais Motsch (Coleoptera: Curculionidae). Journal of Applied Sciences and Environmental Management 9, 165–168.Google Scholar
  29. Xue R. D., Ali A. and Barnard D. R. (2003) Laboratory evaluation of toxicity of 16 insect repellents in aerosol sprays to adult mosquitoes. Journal of the American Mosquito Control Association 19, 271–274.PubMedGoogle Scholar

Copyright information

© ICIPE 2006

Authors and Affiliations

  • N. N. Ntonifor
    • 1
  • I. Mueller-Harvey
    • 2
    Email author
  • H. F. Van Emden
    • 2
  • R. H. Brown
    • 2
  1. 1.Department of Life SciencesUniversity of BueaBueaCameroon
  2. 2.Department of AgricultureThe University of ReadingReadingUK

Personalised recommendations