International Journal of Tropical Insect Science

, Volume 24, Issue 3, pp 260–265 | Cite as

Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin

  • Leunita A. Sumba
  • Tom O. Guda
  • Arop L. Deng
  • Ahmed Hassanali
  • John C. Beier
  • Bart G. J. KnolsEmail author
Short Communication


Laboratory studies were carried out to investigate the role of larval habitat-derived microorganisms in the production of semiochemicals for oviposition site selection by Anopheles gambiae Giles sensu stricto mosquitoes. Dual-choice bioassays with gravid females were conducted in standard mosquito cages. Field-collected or laboratory-reared mosquitoes, individually or in groups, were offered a choice between unmodified (water or soil from a natural breeding site) or modified substrates (filtered water, autoclaved soil or sterile media to which bacterial suspensions had been added). Egg counts were used to assess oviposition preferences. Mosquitoes preferred to oviposit on unmodified substrates from natural larval habitats containing live microorganisms rather than on sterilized ones. Variable responses were observed when sterile substrates were inoculated with bacteria isolated from water and soil from natural habitats. We conclude that microbial populations in breeding sites produce volatiles that serve as semiochemicals for gravid An. gambiae. These signals, in conjunction with other (non-olfactory) chemical and physical cues, may be used by the female to assess the suitability of potential larval habitats in order to maximize the fitness of her offspring.

Key words

oviposition site selection soil microbiota semiochemicals Anopheles gambiae 

Mots clés

choix d’un site de ponte microfaune du sol substances chimiques attractives Anopheles gambiae 


Des études de laboratoire ont été conduites afin de déterminer le rôle de substances chimiques attractives de microorganismes présents dans les sites larvaires dans la préférence de ponte des femelles gravides d’Anopheles gambiae s.s. pour ces sites. Un test biologique à double choix a été mis en place dans des cages à moustiques standards contenant des femelles gravides. Un choix entre substrat naturel (eau et sol non modifiés provenant des sites larvaires naturels) et substrat modifié (eau filtrée, sol stérilisé, ajout de suspensions bactériennes) est offert individuellement ou en groupe aux femelles collectées sur le terrain ou élevées en laboratoire. Le nombre d’oeufs pondus dans chaque substrat a été utilisé comme critère pour évaluer la préférence des femelles gravides pour un substrat particulier. Les femelles ont préféré pondre dans le substrat naturel contenant des microorganismes vivants plutôt que dans le substrat stérile. Des réponses variables ont été observées lorsque des bactéries provenant des sites larvaires naturels ont été inoculées dans le substrat stérile. Nous concluons que la population microbienne, présente dans les site larvaires, produit des substances chimiques odorantes attirant les femelles gravides d’Anopheles gambiae s.s. Ces signaux, associés à d’autres substances non odorantes et à des facteurs physiques, peuvent être utilisés par les femelles pour évaluer le potentiel d’un site larvaire, en vue du développement optimal de leur progéniture.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beehler J. W., Millar J. G. and Mulla M. S. (1993) Synergism between chemical factors and visual cues influencing oviposition of the mosquito Culex quinquefasciatus (Diptera: Culcidae). J. Chem. Ecol. 19, 635–643.CrossRefGoogle Scholar
  2. Benzon G. L. and Apperson C. S. (1988) Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). J. Med. Entomol. 25, 158–164.CrossRefGoogle Scholar
  3. Blackwell A. and Johnson S. N. (2000) Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s.. Ann. Trop. Med. Parasitol. 94, 389–398.CrossRefGoogle Scholar
  4. Briegel H. and Hö rler E. (1993) Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae). J. Med. Entomol. 30, 975–985.CrossRefGoogle Scholar
  5. Everall N. C. and Lees D. R. (1997) The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Res. J. 31, 614–620.CrossRefGoogle Scholar
  6. Gimnig J. E., Ombok M., Kamau L. and Hawley W. A. (2001) Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J. Med. Entomol. 38, 282–288.CrossRefGoogle Scholar
  7. Gjullin G. M., Johnsen J. O. and Plapp F. W. J. (1965) The effect of odors released by various waters on the oviposition sites selected by two species of Culex. Mosq. News 25, 268–269.Google Scholar
  8. Hazard E. I., Mayer M. S. and Savage K. E. (1967) Attraction and oviposition stimulation of gravid female mosquitoes by bacteria isolated from hay infusions. Mosq. News 27, 133–136.Google Scholar
  9. Ikeshoji T., Saito K. and Yano A. (1975) Bacterial production of the ovipositional attractants for mosquitoes on fatty acid substrates. J. Appl. Entomol. Zool. 10, 239–242.CrossRefGoogle Scholar
  10. Knight J. C. and Corbet S. A. (1991) Compounds affecting mosquito oviposition: structure-activity relationships and concentration effects. J. Am. Mosq. Cont. Assoc. 7, 37–41.Google Scholar
  11. Kramer W. L. and Mulla M. S. (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ. Entomol. 8, 1111–1117.CrossRefGoogle Scholar
  12. McCrae A. W. (1984) Oviposition by African malaria vector mosquitoes. II. Effects of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, sensu lato. Ann. Trop. Med. Parasitol. 78, 307–318.CrossRefGoogle Scholar
  13. Merritt R. W., Dadd R. H. and Walker E. D. (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 37, 349–376.CrossRefGoogle Scholar
  14. Millar J. G., Chaney J. D. and Mulla M. S. (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J. Am. Mosq. Cont. Assoc. 8, 11–17.Google Scholar
  15. Minakawa N., Mutero C. M., Githure J. I., Beier J. C. and Yan G. (1999) Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016.CrossRefGoogle Scholar
  16. Minakawa N., Githure J. I., Beier J. C. and Yan G. (2001) Survival strategies of anopheline mosquitoes during dry period in Western Kenya. J. Med. Entomol. 38, 388–392.CrossRefGoogle Scholar
  17. Navarro D. M. A. F., De Oliveria P. E. S., Potting R. P. J., Brito A. C. and Fital S. J. F. (2003) The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Diptera: Culicidae). J. Appl. Entomol. 127, 46–50.CrossRefGoogle Scholar
  18. Poonam S., Paily K. P. and Balaraman K. (2002) Oviposition attractancy of bacterial culture filtrates-response of Culex quinquefasciatus. Mem. Inst. Oswaldo Cruz 97, 359–362.CrossRefGoogle Scholar
  19. Reiter P. (1983) A portable battery-powered trap for collecting gravid Culex mosquitoes. Mosq. News 43, 496–498.Google Scholar
  20. Reiter P., Amador M. A. and Colon N. (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J. Am. Mosq. Cont. Assoc. 7, 52–55.Google Scholar
  21. Rejmankova E., Harbin-Ireland and Lege M. (2000) Bacterial abundance in larval habitats of four species of Anopheles (Diptera: Culicidae) in Belize, Central America. J. Vect. Ecol. 25, 229–239.Google Scholar
  22. Service M. (1993) Mosquito Ecology: Field Sampling Methods. Chapman and Hall, London. 988 pp.Google Scholar
  23. Smith T. W., Walker E. D. and Kaufman M. G. (1998) Bacterial density and survey of cultivable heterotrophs in the surface water of a freshwater marsh habitat of Anopheles quadrimaculatus larvae (Diptera: Culicidae). J. Am. Mosq. Cont. Assoc. 14, 72–77.Google Scholar
  24. Straif S. C., Mbogo C. N., Toure A. M., Walker E. D., Kaufman M., Touré Y. T. and Beier J. C. (1998) Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J. Med. Entomol. 35, 222–226.CrossRefGoogle Scholar
  25. Takken W. and Knols B. G. J. (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44, 131–157.CrossRefGoogle Scholar
  26. Trexler J. D., Apperson C. S., Zurek L., Gemeno C., Schal C., Kaufman M., Walker E., Watson D. W. and Wallace L. (2003) Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 40, 841–846.CrossRefGoogle Scholar
  27. Walker E. D. and Merritt R. W. (1993) Bacterial enrichment in the surface microlayer of an Anopheles quadriannulatus (Diptera: Culicidae) larval habitat. J. Med. Entomol. 30, 1050–1052.CrossRefGoogle Scholar

Copyright information

© ICIPE 2004

Authors and Affiliations

  • Leunita A. Sumba
    • 1
    • 2
  • Tom O. Guda
    • 1
  • Arop L. Deng
    • 2
  • Ahmed Hassanali
    • 1
  • John C. Beier
    • 3
  • Bart G. J. Knols
    • 4
    • 5
    Email author
  1. 1.International Centre of Insect Physiology and Ecology (ICIPE)Mbita Point Research and Training CentreMbita PointKenya
  2. 2.Department of ZoologyEgerton UniversityNjoroKenya
  3. 3.Department of Epidemiology and Public Health, Highland Professional BuildingUniversity of Miami School of MedicineMiamiUSA
  4. 4.Laboratory of EntomologyWageningen University and Research CentreWageningenThe Netherlands
  5. 5.FAO/IAEA, Agency’s laboratories SeibersdorfEntomology UnitViennaAustria

Personalised recommendations