Toxicity and antifeedant activity of crude seed extracts of Annona squamosa (Annonaceae) against lepidopteran pests and natural enemies

  • J. Audrey Leatemia
  • Murray B. IsmanEmail author


Toxicity and antifeedant activity of crude seed extracts of Annona squamosa (Magnoliales: Annonaceae) from Maluku, Indonesia, against the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) and the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) were determined using different bioassays. Aqueous seed extracts and an aqueous emulsion of ethanolic seed extracts were toxic to both species. Crude aqueous extract also deterred feeding of fourth-instar P. xylostella in a leaf disc choice bioassay. Toxicities of crude aqueous extracts to natural enemies, Chrysoperla cornea (Stephens) (Neuroptera: Chrysopidae) and Orius insidiosus (Say) (Hemiptera: Anthocoridae) were investigated using direct spray and residual contact tests. Chrysoperla cornea larvae were less susceptible to the extracts than were O. insidiosus adults.

Key words

Annona squamosa seed extracts botanical insecticide Plutella xylostella Trichoplusia ni Chrysoperla carnea Orius insidiosus 


Les effets toxiques et antiappétants d’extraits bruts provenant des graines d’Annona squamosa, une plante originaire de Maluku en Indonésie, ont été évalués envers la fausse teigne des crucifères, Plutella xylostella L. (Lepidoptera: Plutellidae) et la fausse-arpenteuse du chou, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) à l’aide de différents bioessais. Les extraits aqueux et une émulsion aqueuse dérivée d’un extrait éthanolique se sont avérés toxiques contre les deux espèces. Les extraits aqueux ont réduit le taux d’alimentation de P. xylostella au quatrième stade larvaire lors de bioessais avec choix de disques foliaires. La toxicité des extraits aqueux bruts envers deux ennemis naturels des espèces en question, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) et Orius insidiosus (Say) (Hemiptera: Anthocoridae) a aussi été testé par applications directes et par contact résiduel. Les larves de C. carnae étaient moins sensibles aux extraits que l’étaient les adultes de O. insidiosus.

Mots clés

Annona squamosa extraits de graines insecticide d’origine végétale Plutella xylostella Trichoplusia ni Chrysoperla carnea Orius insidiosus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–276.CrossRefGoogle Scholar
  2. Abdul-Kadir H. B., Payne C. C., Crook N. E., Fenlon J. S. and Winstanley D. (1999) The comparative susceptibility of the diamondback moth Plutella xylostella and some other major lepidopteran pests of brassica crops to a range of baculoviruses. Biocon. Sci. Tech. 9, 421–433.CrossRefGoogle Scholar
  3. Ahammadsahib K. I., Hollingworth R. M., McGovren P. J., Hui Y. H. and McLaughlin J. L. (1993) Inhibition of NADH: ubiquinone reductase (mitochondrial complex I) by bullatacin, a potent antitumor and pesticidal annonaceous acetogenin. Life Sci. 53, 1113–1120.CrossRefGoogle Scholar
  4. Alkofahi A., Rupprecht J. K., Anderson J. E., McLaughlin J. L., Mikolajczak K. L. and Scott B. A. (1989) Search for new pesticides from higher plants, pp. 24–25. In Insecticides of Plant Origin (Edited by J. T. Arnason, B. J.R. Philogene and P. Morand). ACS Symposium Series 387. Washington, D.C.Google Scholar
  5. Ankersmith G. W. (1953) DDT resistance in Plutella maculipennis (Curt.) (Lepidoptera) in Java. Bull. Entomol. Res. 44, 421–425.CrossRefGoogle Scholar
  6. Anon. (2000) Statistix (7) User’s Manual. Analytical Software Tallahassee, FL, 359 pp.Google Scholar
  7. Araya H., Sahai M., Singh S., Singh A. K., Yoshida M., Hara N. and Fujimoto Y. (2002) Squamocin-O1 and squamocin-O2, new adjacent bis-tetrahydrofuran acetogenins from the seeds of Annona squamosa. Phytochemistry 61, 999–1004.CrossRefGoogle Scholar
  8. Basana I. R. and Prijono D. (1994) Insecticidal activity of aqueous seed extracts of four species of Annona (Annonaceae) against cabbage head caterpillar, Croci-dolomia binotalis Zeller (Lepidoptera: Pyralidae). Bull. Plant Pests and Dis. 7, 50–60.Google Scholar
  9. Berenbaum M. (1985) Brementown revisited: interactions among allelochemicals in plants. Rec. Adv. Phytochem. 19, 39–169.Google Scholar
  10. Berenbaum M. R., Nitao J. K. and Zangerl A. R. (1991) Adaptive significance of furanocoumarin diversity in Pastinaca sativa. J. Chem. Ecol. 17, 207–215.CrossRefGoogle Scholar
  11. Bomford M. K. and Isman M. B. (1996) Desensitization of fifth instar Spodoptera litura to azadirachtin and neem. Entomol. Exp. Appl. 81, 301–313.CrossRefGoogle Scholar
  12. Capinera J. L. (2001) Handbook of Vegetable Pests. Academic Press, San Diego, 729 pp.Google Scholar
  13. Chen W., Isman M. B. and Chiu S.-F. (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctui-dae). J. Appl. Entomol. 119, 367–370.CrossRefGoogle Scholar
  14. Cole M. D. (1994) Key antifungal, antibacterial and anti-insect assays—a critical review. Biochem. Syst. Ecol. 22, 837–856.CrossRefGoogle Scholar
  15. Corrigan J. E. and Laing J. E. (1991) An improved method for producing small, consistent samples of hosts for presenting to the egg parasitoid, Trichogramma minutum. Proc. Entomol. Soc. Ont. 122, 103–104.Google Scholar
  16. Crosby D. G. (1971) Minor insecticides of plant origin, pp. 171–239. In Naturally Occurring Insecticides (Edited by M. Jacobson and D. G. Crosby). Marcel Dekker Inc., New York.Google Scholar
  17. Elzen G. W. (2001) Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Entomol. 94, 55–59.CrossRefGoogle Scholar
  18. Feng R. and Isman M. B. (1995) Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia 51, 831–833.CrossRefGoogle Scholar
  19. Finney D. J. (1971) Probit Analysis. University Press, Cambridge, UK. 333 pp.Google Scholar
  20. Fujimoto Y., Murasaki C., Shimada H., Nishioka H., Kakinuma K., Sing S., Gupta Y. K. and Sahai M. (1994) Annonaceous acetogenins from the seeds of Annona squamosa. Non-adjacent bis-tetrahydrofuranic acetogenins. Chem. Pharm. Bull. 42, 1175–1184.CrossRefGoogle Scholar
  21. Hamilton G. C. and Lashomb J. H. (1997) Effect of insecticides on two predators of the Colorado potato beetle (Coleoptera: Chrysomelidae). Flor. Entomol. 80, 10–23.CrossRefGoogle Scholar
  22. Hoffmann M. P. and Frodsham A. C. (1993) Natural Enemies of Vegetable Insect Pests. Cooperative Extension, Cornell University, Ithaca, New York, 63 pp.Google Scholar
  23. Isman M. B., Koul O., Luczynski A. and Kaminski J. (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 38, 1406–1411.CrossRefGoogle Scholar
  24. Jacobson D. A. and Kring T. J. (1995) Efficacy of predators attacking Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) eggs on grain sorghum in the field. J. Entomol. Sci. 30, 251–257.CrossRefGoogle Scholar
  25. Johnson D. R. (1953) Plutella maculipennis resistance to DDT in Java. J. Econ. Entomol. 46, 176.CrossRefGoogle Scholar
  26. Kirsch K. and Schmutterer H. (1988) Low efficacy of a Bacilus thuringiensis (Berl.) formulation in controlling the diamondback moth, Plutella xylostella (L.) in the Philippines. J. Appl. Ent. 105, 249–255.CrossRefGoogle Scholar
  27. Kohyama Y. (1986) Insecticidal activity of MK-139 (CME 134) against diamondback moth, pp. 265–269. In Diamondback Moth Management (Edited by N. S. Talekar and T. D. Griggs). Proceedings of the first International Workshop, Tainan, Taiwan, 11–15 March 1985. Asian Vegetable Research and Development Center, Shanhua, Taiwan.Google Scholar
  28. Leatemia J. A. and Isman M. B. (2004) Insecticidal activity of crude seed extracts of Annona spp. (Annonaceae), Lansium domesticum and Sandoricum koetjape (Melia-ceae) against lepidopteran larvae. Phytoparasitica 32, 32–37.CrossRefGoogle Scholar
  29. Lewis A. C. and van Emden H. F. (1986) Assays for insect feeding, pp. 95–119. In Insect-Plant Interactions (Edited by J. R. Miller and T. A. Miller). Springer Verlag, New York.CrossRefGoogle Scholar
  30. Lewis M. A., Arnason J. T., Philogene J. R., Rupprecht J. K. and McLaughlin J. L. (1993) Inhibition of respiration at site I by asimicin, an insecticidal acetogenin of the paw paw, Asimina triloba (Annonaceae). Pestic. Biochem. Physiol. 45, 15–23.CrossRefGoogle Scholar
  31. Londershausen M., Leicht W., Lieb F. and Moesschier H. (1991) Molecular mode of action of annonins. Pestic. Sci. 33, 427–433.CrossRefGoogle Scholar
  32. Mariapan V. and Saxena R. C. (1983) Effect of custard-apple oil and neem oil on survival of Nephotettix virescens (Homoptera: Cicadellidae) and on rice tungro virus transmission. J. Econ. Entomol. 76, 573–576.CrossRefGoogle Scholar
  33. Mariapan V. and Saxena R. C. (1984) Effect of mixtures of custard-apple oil and neem oil on survival of Nephotettix virescens (Homoptera: Cicadellidae) and on rice tungro virus transmission. J. Econ. Entomol. 77, 519–521.CrossRefGoogle Scholar
  34. Mariapan V., Jayaraj S. and Saxena R. C. (1988) Effect of nonedible seed oils on survival of Nephotettix virescens (Homoptera: Cidadellidae) and on transmission of rice tungro virus. J. Econ. Entomol. 81, 1369–1373.CrossRefGoogle Scholar
  35. McLaughlin J. L., Zeng L., Oberlies N. H., Alfonso D., Johnson H. A. and Cummings B. (1997) Annonaceous acetogenins as new natural pesticides: recent progress, pp. 117–133. In Phytochemicals for Pest Control (Edited by P. A. Hedin, R. M. Hollingworth, E. P. Masler, J. Miyamoto and D. G. Thompson). ACS Symposium Series 658 Washington, DC.CrossRefGoogle Scholar
  36. Mikolajczak K. L., McLaughlin J. L. and Rupprecht J. K. (1988) Control of pests with annonaceous acetogenins. US Patent No. 4721727.Google Scholar
  37. Moeschier H. F., Pfuger W. and Wendlisch D. (1987) Pure annonin and a process for the preparation thereof, US Patent No. 4689323.Google Scholar
  38. Perera D. R., Armstrong G. and Senanayake N. (2000) Effect of antifeedants on the diamondback moth (Plutella xylostella) and its parasitoid Cotesia plutellae. Pest Manag. Sci. 56, 486–490.CrossRefGoogle Scholar
  39. Pree D. J., Archibald D. E. and Morrison R. K. (1989) Resistance to insecticides in the common green lacewing (Chrysoperla carnea (Neuroptera: Chrysopi-dae) in southern Ontario. J. Econ. Entomol. 82, 29–34.CrossRefGoogle Scholar
  40. Prijono, D., Manuwoto, S. and Soemawinata, R. A. T. (1994) Insecticidal activity of sugar apple (Annona squamosa L.) and pond apple (A. glabra L.) seed extracts against rice brown planthopper, Nilaparvata lugens (Stal). Proc. Unesco National Seminar, Depok, Indonesia, pp. 335–341.Google Scholar
  41. Prijono D., Gani M. S. and Syahputra E. (1997) Insecticidal activity of annonaceous seed extracts against Crocido-lomia binotalis Zeller (Lepidoptera: Pyralidae). Bull. Plant Pests and Dis. 9, 1–6.Google Scholar
  42. Ratnayake S., Rupprecht J. K., Potter W. M. and McLaughlin J. L. (1992) Evaluation of various parts of the paw paw tree, Asimina triloba (Annonaceae) as commercial sources of the pesticidal annonaceous acetogenins. J. Econ. Entomol. 85, 2353–2356.CrossRefGoogle Scholar
  43. Rumpf S., Frampton C. and Chapman B. (1997) Acute toxicity of insecticides to Micromus tasmaniae (Neuroptera: Hemerobiidae) and Chrysoperla carnea (Neuroptera: Chrysopidae): LC50 and LC90 estimates for various test durations. J. Econ. Entomol. 90, 1493–1997.CrossRefGoogle Scholar
  44. Sahai M., Singh S., Singh M., Gupta Y. K., Akashi S., Yuji R., Hirayama K., Asaki H., Araya H., Hara H., Eguchi T., Kakinuma K. and Fujimoto Y. (1994) Annonaceous acetogenins from the seeds of Annona squamosa: adjacent bis-tetrahydrofuranic acetogenins. Chem. Pharm. Bull. 42, 1163–1174.CrossRefGoogle Scholar
  45. Schmutterer H. (1990) Properties and potential natural pesticides from the neem tree. Annu. Rev. Entomol. 35, 271–297.CrossRefGoogle Scholar
  46. Schoonhoven L. M. (1982) Biological aspects of antifeedants. Entomol. Exp. Appl. 31, 57–69.CrossRefGoogle Scholar
  47. Shelton A. M. and Wyman J. A. (1992) Insecticide resistance of diamondback moth in North America, pp. 447–454. In Diamondback Moth and Other Crucifer Pests (Edited by N. S. Talekar). Proceeding of the Second International Workshop, Tainan, Taiwan, 10–14 December 1990. Asian Vegetable Research and Development Center, Taipei.Google Scholar
  48. Snedecor G. W. and Cochran W. G. (1989) Statistical Methods. Iowa States University Press, Ames, Iowa. 503 pp.Google Scholar
  49. Sparks T. C., Thompson G. D., Kirst H. A., Hertlein M. B., Larson L. L., Worden T. V and Thibault S. T. (1998) Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 91, 1277–1283.CrossRefGoogle Scholar
  50. Tabashnik B. E., Cushing N. L., Finson N. and Johnson M. W. (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83, 1671–1676.CrossRefGoogle Scholar
  51. Talekar N. S. and Shelton A. M. (1993) Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38, 275–301.CrossRefGoogle Scholar

Copyright information

© ICIPE 2004

Authors and Affiliations

  1. 1.Faculty of Agricultural SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations