Advertisement

Mammalian Biology

, Volume 68, Issue 5, pp 284–298 | Cite as

On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA

  • F. ZachosEmail author
  • G. B. Hartl
  • M. Apollonio
  • Tanja Reutershan
Original investigation

Abstract

Five south-European red deer populations from Spain, mainland Italy (Val di Susa and Tarvis), Sardinia and Bulgaria were analysed with regard to microsatellite loci and the mtDNA control region to cast light on the phylogeographic origin of the Corsican red deer which is restricted to Corsica and Sardinia. Whilst according to mtDNA haplotypes Sardinian red deer showed the closest affinity to the Spanish population, microsatellite analyses yielded completely different results in that Sardinia and Spain exhibited the greatest genetic distance whereas Tarvis was the population most closely related to Sardinia. These results are discussed including evidence as to the oldest fossil red deer remains on Sardinia. The latter could play a pivotal role regarding the decision between introduction of red deer on Corsica and Sardinia through humans in Holocene or natural settlement in Upper Pleistocene times.

Keywords

Cervus etaphus corsicanus phylogeography microsatellites mitochondrial DNA 

Untersuchungen zum phylogeographischen Ursprung des Tyrrhenischen Rothirsches (Cervus elaphus corskanus) auf der Basis von Mikrosatelliten und mitochondrialer DNA

Zusammenfassung

Mit dem Ziel, den phylogeographischen Ursprung des Tyrrhenischen Rothirsches zu ergründen, wurden fünf südeuropäische Rothirschpopulationen aus Spanien, dem italienischen Festland (Val di Susa und Tarvis), Sardinien sowie Bulgarien auf der Basis von Mikrosatelliten und mitochondrialer Kontrollregion vergleichend analysiert. Während die mtDNA-Haplotypen eine enge Verwandtschaft zwischen spanischen und sardischen Hirschen nahelegten, ergab die Mikrosatellitenanalyse gerade für diese beiden Populationen die höchsten genetischen Distanzwerte und zeigte Tarvis als Sardinien am nächsten stehend. Diese Ergebnisse werden unter Einbeziehung von Hinweisen auf die ältesten fossilen Rothirschnachweise auf Sardinien diskutiert. Letztere könnten eine entscheidende Rolle bei der Beantwortung der Frage spielen, ob korsische und sardische Rothirsche durch den Menschen im Holozän eingeführt wurden oder ob sie die Inseln im Spätpleistozän auf natürlichem Wege besiedelten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, M. V.; Dow, B. D. (1994): The use of micro-satellite analysis in population biology: Background, methods and potential applications. In: Molecular Ecology and Evolution: Approaches and Applications Ed. by B. Schierwater, B. Streit, G. P. Wagner and R. Desaixe. Basel: Birkhäuser Verlag. Pp. 185–201.CrossRefGoogle Scholar
  2. Belkhir, K. (2000): GENETIX v. 4.01. Labora-toire Genome et Populations, CNRS UPR 9060, Universite de Montpellier.Google Scholar
  3. Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, S. L. F.; Hawkins, G. A.; SOLI-NAS Toldo, S.; Fries, R.; Grosz, M. D.; Yoo, I.; Beattie, C. W. (1994): A genetic linkage map for cattle. Genetics 136, 619–639.PubMedPubMedCentralGoogle Scholar
  4. Brookfield, J. (1996): A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455.PubMedCrossRefGoogle Scholar
  5. Buchanan, F. C.; Crawford, A. M. (1993): Ovine microsatellites at the OarFCBll, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim. Genet. 24, 145.PubMedCrossRefGoogle Scholar
  6. Butzler, W. (1986): Cervus elaphus Linnaeus, 1758 - Rothirsch. In: Handbuch der Säugetiere Europas. Vol. 2/II. Ed. by J. Niethammer and F. Krapp. Wiesbaden: Aula-Verlag. Pp. 107–139.Google Scholar
  7. Callen, D. F.; Thompson, A. D.; Shen, Y.; Phillips, H.; Richards, R. L.; Mulley, J. C.; Sutherland, G. R. (1993): Incidence and origin of ‘null’ alleles in the (AC)n microsatellite markers. Am. X Human Gen. 52, 922–927.Google Scholar
  8. Cavalli-Sforza, L. L.; Edwards, A. W. F. (1967): Phylogenetic analysis: models and estimation procedures. Am. J. Human Gen. 19, 233–257.Google Scholar
  9. Charlesworth, J. K. (1957): The Quaternary Era with Special Reference to its Glaciation. Vol. 2. London: Edward Arnold Publishers.Google Scholar
  10. Crow, I.; Kimura, M. (1970): An Introduction to Population Genetics Theory. New York, Evanston, London: Harper and Row.Google Scholar
  11. Dobroruka, L. J. (1960): Der Karpatenhirsch, Cervus elaphus montanus Botezat 1903. Zool. Anz. 165, 481–483.Google Scholar
  12. Dolan, J. M. (1988): A Deer of Many Lands - A Guide to the Subspecies of the Red Deer Cervus elaphus L. Zoonooz LXII (10), 4–34.Google Scholar
  13. Ede, A. I.; Pierson, C. A.; Crawford, A. M. (1995): Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim. Genet. 26, 129–130.PubMedCrossRefGoogle Scholar
  14. Felsenstein, J. (1993): PHYLIP (Phylogeny Inference Package) version 3.5 c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  15. Fitch, W. M.; Margoliash, E. (1967): Construction of phylogenetic trees. Science 155, 279–284.PubMedCrossRefGoogle Scholar
  16. Flerov, C. C. (1952): Musk deer and deer. In: Fauna of U. S. S. R. Mammals. Vol. 1, 2. Moskau: Academy of Sciences.Google Scholar
  17. Geist, V. (1998): Deer of the World. Their Evolution, Behavior, and Ecology. Mechanicsburg, PA: Stackpole Books.Google Scholar
  18. Goldstein, D. B.; Ruiz Linares, A.; Cavalli-Sforza, L. L.; Feldman, M. W (1995): Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA 92, 6723–6727.PubMedCrossRefGoogle Scholar
  19. Goodman, S. J. (1997): RST Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6, 881–885.CrossRefGoogle Scholar
  20. Groves, C. P.; Grubb, P. (1987): Relationships of Living Deer. In: Biology and Management of the Cervidae. Ed. by C. M. WEMMER. Research Symposia of the National Zoological Park. Washington, D. G, London: Smithsonian Institution Press. Pp. 21–59.Google Scholar
  21. Gyllensten, U.; Ryman, N.; Reuterwall, C.; Dratch.; P. (1983): Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51, 561–580.CrossRefGoogle Scholar
  22. Hartl, G. B.; Markov, G.; Rubin, A.; Findo, S.; Lang, G.; Willing, R. (1993): Allozyme diversity within and among populations of three ungulate species (Cervus elaphus, Capreolus ca-preolus, Sus scrofd) of Southeastern and Central Europe. Z. Säugetierkunde 58, 352–361.Google Scholar
  23. Hartl, G. B.; Nadlinger, K.; Apollonio, M.; Markov, G.; Klein, E.; Lang, G.; Findo, S.; Markowski, J. (1995): Extensive mitochon-drial-DNA differentiation among European Red deer (Cervus elaphus) populations: implications for conservation and management. Z. Säugetierkunde 60, 41–52.Google Scholar
  24. Hartl, G. B.; Willing, R.; Lang, G.; Klein, F.; Koller, J. (1990): Genetic variability and differentiation in red deer (Cervus elaphus L.) of Central Europe. Genet. Sci. Evol. 22, 289–306.CrossRefGoogle Scholar
  25. Hecht, M. K.; Goody, P. C.; Hecht, B. M. (Eds.) (1977): Major Patterns in Vertebrate Evolution. New York, London: Plenum Press.CrossRefGoogle Scholar
  26. Klein Hofmeijer, G. (1997): Late Pleistocene Deer Fossils from Corbeddu Cave. Implications for human colonization of the island of Sardinia. BAR International Series 663. Oxford: Hadrian Books.Google Scholar
  27. Krumbiegel, I. (1982): Der Korsika-Rothirsch (Cervus elaphus corsicanus, Erxleben 1777) und sein Biotop. Säugetierkundl. Mitt. 30, 281–286.Google Scholar
  28. Lister, A. M. (1989): Rapid dwarfing of red deer on Jersey in the Last Interglacial. Nature 342, 539–542.PubMedCrossRefGoogle Scholar
  29. Lister, A. M. (1995): Sea-levels and the evolution of island endemics: the dwarf red deer of Jersey. In: Island Britain: a Quaternary Perspective. Ed. by R. C. Preece. Geological Society Spec. Publ. 96, 151–172.Google Scholar
  30. Lorenzini, R.; Mattioli, S.; Fico, R. (1998): Allozyme variation in native red deer Cervus elaphus of Mesola Wood, northern Italy: implications for conservation. Acta Theriol., Suppl. 5, 63–74.CrossRefGoogle Scholar
  31. Lowe, V. P. M.; Gardiner, A. S. (1974): A re-examination of the subspecies of Red deer (Cervus elaphus) with particular reference to the stocks in Britain. J. Zool. (London) 174, 185–201.CrossRefGoogle Scholar
  32. Lydekker, R. (1898): The Deer of All Lands. A History of the Family Cervidae Living and Extinct. London: Rowland Ward.CrossRefGoogle Scholar
  33. Masseti, M. (1993): Post-Pleistocene variations of the non-flying terrestrial mammals on some Italian islands. Suppl. Ric. Biol. Selvaggina 21, 201–209.Google Scholar
  34. Masseti, M.; Vianello, E. (1991): Importazioni preistoriche di mammiferi alloctoni nelle isole del Mar Tirreno centro-settentrionale. Riv. Sci. Preistorica 43, 275–292.Google Scholar
  35. Nei, M. (1972): Genetic distance between populations. Am. Nat. 106, 283–292.CrossRefGoogle Scholar
  36. Nei, M. (1975): Molecular Population Genetics and Evolution. Amsterdam, Oxford: North Holland.Google Scholar
  37. Nei, M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.PubMedPubMedCentralGoogle Scholar
  38. Niethammer, G. (1963): Die Einbürgerung von Säugetieren und Vögeln in Europa. Hamburg, Berlin: Paul Parey.Google Scholar
  39. Ohta, T.; Kimura, M. (1973): The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genet. Res., Camb. 22, 201–204.CrossRefGoogle Scholar
  40. Paetkau, D.; Calvert, W.; Stirling, I.; Strobeck, C. (1995): Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4, 347–354.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Page, R. D. M. (1996): TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357–358.PubMedGoogle Scholar
  42. Randi, E.; Mucci, N.; Claro-Hergueta, E.; Bonnet, A.; Douzery, E. J. P. (2001): A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim. Cons. 4, 1–11.CrossRefGoogle Scholar
  43. Raymond, M.; Rousset, F. (1995): GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249.CrossRefGoogle Scholar
  44. Rozas, J.; Rozas, R. (1999): DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis Bioinformatics 15, 174–175.PubMedCrossRefGoogle Scholar
  45. Saitou, N.; Nei, M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedPubMedCentralGoogle Scholar
  46. Sanges, M. (1987): Gli strati del Neolitico antico e medio nella Grotta Corbeddu di Oliena (Nuoro). Nota preliminare. Atti della XXVI Riunione Scientifica I.I.P. P., Firenze 1985. Pp. 825–830.Google Scholar
  47. Schierwater, R.; Streit, R.; Wagner, G. P.; De-Salle, R. (Eds.) (1994): Molecular Ecology and Evolution: Approaches and Applications. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  48. SchlÖTterer, C.; Pemberton, I. (1994): The use of microsatellites for genetic analysis of natural populations. In: Molecular Ecology and Evolution: Approaches and Applications. Ed. by B. Schierwater, B. Streit, G. P. Wagner and R. Desalle. Basel: Birkhäuser Verlag. Pp. 203–214.CrossRefGoogle Scholar
  49. Schneider, S.; Roessli, D.; Excoffier, L. (2000): Arlequin ver 2. 000: A software for population genetics data analysis Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  50. Shackleton, N. J. (1987): Oxygen isotopes, ice volume and sea level. Quaternary Scie. Rev. 6, 183–190.CrossRefGoogle Scholar
  51. Slatkin, M. (1985): Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16, 393–430.CrossRefGoogle Scholar
  52. Slatkin, M. (1995): A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.PubMedPubMedCentralGoogle Scholar
  53. Sondaar, P.-Y. (1977): Insularity and its effect on mammal evolution. In: Major Patterns in Vertebrate Evolution. Ed. by M. K. Hecht, P. C. Goody and B. M. Hecht. New York, London: Plenum Press. Pp. 671–707.CrossRefGoogle Scholar
  54. Sondaar, P.-Y.; Sanges, M.; Kotsakis, T.; De Boer, P. L. (1986): The Pleistocene deer hunter of Sardinia. Geobios 19, 17–25.CrossRefGoogle Scholar
  55. Swarbrick, P. A.; Buchanan, F. C.; Crawford, A. M. (1991): Ovine dinucleotide repeat polymorphism at the MAF35 locus. Anim. Genet. 22, 369–370.PubMedCrossRefGoogle Scholar
  56. Swarbrick, P. A.; Crawford, A. M. (1992): Ovine dinucleotide repeat polymorphism at the MAF109 locus. Anim. Genet. 23, 84.PubMedCrossRefGoogle Scholar
  57. Vaiman, D.; Osta, R.; Mercier, D.; Grohs, C.; Le-Veziel, H. (1992): Characterization of five new bovine dinucleotide repeats. Anim. Genet. 23, 537–541.PubMedCrossRefGoogle Scholar
  58. Vigne, J.-D. (1992): Zooarchaeology and the bio-geographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm. Rev. 22, 87–96.CrossRefGoogle Scholar
  59. Whitehead, G. K. (1993): The Whitehead Encyclopedia of Deer. Shrewsbury: Swan Hill Press.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2003

Authors and Affiliations

  • F. Zachos
    • 1
    Email author
  • G. B. Hartl
    • 1
  • M. Apollonio
    • 1
  • Tanja Reutershan
    • 2
  1. 1.Institut für Haustierkunde der Christian-Albrechts-Universität zu KielKielGermany
  2. 2.Dipartimento di ZoologiaUniversitä di SassariSassariItaly

Personalised recommendations