Advertisement

The European Journal of Development Research

, Volume 29, Issue 5, pp 1053–1069 | Cite as

Using Rasch Measurement to Evaluate a Perceived Improvement in Access to Financial Asset Scale in Rural Lao PDR

  • Jo Durham
  • Keith Rickart
Original Article
  • 43 Downloads

Abstract

This paper describes the process of evaluating a self-reported perceived improvement in access to finance asset scale. The scale was administered as one component of a livelihood asset scale as part of an evaluation of a humanitarian mine action programme which removed explosive remnants of war from rural communities in Lao PDR. Previous research into developing such scales has mainly used factor analytic techniques. Using an example of a “perceived improvement in access to finance assets scale”, we demonstrate the use of Rasch measurement as a means to validate the psychometric properties of asset scales. The paper illustrates the diagnostic tools and information provided by Rasch measurement, highlighting its benefits as an alternative to factor analytic techniques where rating scales are used. In addition, the paper provides an example of how subjective, experiential understandings of access to assets can complement more objective measures.

Keywords

livelihoods measurement Rasch Lao PDR access to assets subjective measures 

Cet article décrit le processus d’évaluation d’une échelle d’auto-déclaration perçue dans l’accès au financement axé sur les actifs. L’échelle a été administrée en tant que composante d’un actif relié aux moyens d’existence, dans le cadre de l’évaluation d’un programme d’action humanitaire contre les mines, qui a supprimé les restes explosifs de la guerre, présents dans les collectivités rurales de la RDP Lao. La recherche précédente sur le développement de telles échelles a principalement utilisé la technique d’analyses de facteurs. En utilisant un exemple d’une « amélioration perçue dans l’accès au financement d’échelle d’actifs » nous démontrons l’utilisation de la mesure Rasch comme moyen de valider les propriétés psychométriques des échelles actifs. Cette recherche illustre les outils de diagnostic et d’informations fournies par la mesure Rasch, mettant en évidence ses avantages comme alternatifs aux techniques d’analyse factorielle, où les échelles de notation sont utilisées. En outre, cette recherche offre un exemple d’une compréhension subjective et expérientielle de l’accès aux actifs, pouvant compléter des mesures plus objectives.

Notes

Acknowledgements

We would like to thank the participants in this study and the National Regulatory Authority of the Lao PDR for their support. We would also like to thank Dr Angela Fielding and Dr Richard Parsons for reading earlier versions of this paper.

References

  1. Adams, R. J., Wu, M. L. and Wilson, M. (2012) The Rasch Rating Model and the disordered threshold controversy. Educational and Psychological Measurement 72: 547–573.CrossRefGoogle Scholar
  2. Adato, M., Carter, M. and May, J. (2006) Exploring poverty traps and social exclusion in South Africa using qualitative and quantitative data. The Journal of Development Studies 42(2): 226.CrossRefGoogle Scholar
  3. Anderson, M. B. (1999) Do No Harm; How Aid Can Support PeaceOr War. Boulder, Colorado: Lyenne Rienner Publishers.Google Scholar
  4. Andrich, D. (1978) A rating formulation for ordered response categories Psychometrika 43: 561–573.CrossRefGoogle Scholar
  5. Ashley, C. and Carney, D. (1999) Sustainable Livelihoods: Lessons from early experience. Retrieved from London.Google Scholar
  6. Atkinson, A. B. (2003) Multidimensional deprivation: Contrasting social welfare and counting approaches. Journal of Economic Inequality 1: 51–65.CrossRefGoogle Scholar
  7. Bland, J. M. and Altman, D. G. (1995) Multiple significance tests: The Bonferroni method. British Medical Journal 310: 170.CrossRefGoogle Scholar
  8. Bond, R., Kapondamgaga, P. H., Mwenebanda, B., Yadav, R. P. S. and Rizvi, A. (2007) Monitoring the livelihood platform: Reflections on the operation of the Livelihood Asset-Status Tracking method from India and Malawi Impact Assessment and Project Appraisal 25(4): 301–315.CrossRefGoogle Scholar
  9. Bond, R. and Mukherjee, N. (2002) Livelihood Asset Tracking: An impact monitoring tool? Journal of International Development 14: 805–815.CrossRefGoogle Scholar
  10. Booysen, F., van der Berg, S., Burger, R., von Maltitz, M. and du Rand, G. (2008) Using an asset index to assess trends in poverty in seven Sub-Saharan African countries. World Development 36(6): 1113–1130.CrossRefGoogle Scholar
  11. Bottomley, R. (2003) Crossing the divide: Landmines, villagers and organizations. International Peace Research Institute, Oslo (PRIO), Fuglehauggata 11, N0-0260 OSLO, Norway.Google Scholar
  12. Bourguignon, F. and Chakravarty, S. R. (2003) The measurement of multidimensional poverty. Journal of Economic Inequality 1: 25–49.CrossRefGoogle Scholar
  13. Camfield, L. and Esposito, L. (2014) A Cross-Country Analysis of Perceived Economic Status and Life Satisfaction in High- and Low-Income Countries. World Development 59: 212.CrossRefGoogle Scholar
  14. Chambers, R. and Conway, G. (1992) Sustainable Rural Livelihoods: Practical Concepts for the 21st Century, IDS Dicussion Paper, 296, Brighton, Sussex: Institute of Development Studies.Google Scholar
  15. Cohen, A. (2009) The Multidimensional Poverty Assessment Tool: Design, Development and Application of a New Framework for Measuring Rural Poverty. Rome: International Fund for Agricultural Development.Google Scholar
  16. Crowne, D. P. and Marlowe, D. (1960) A new scale of social desirability independent of psychopathology Journal of Consulting Psychology 24: 349–354.CrossRefGoogle Scholar
  17. DeVellis, R., F. (2003) Scale Development: Theory and Applications, 2nd ed., Vol. 26. Thousand Oaks, CA: Sage.Google Scholar
  18. Ellis, F. (2000) Rural livelihoods and diversity in developing countries. Oxford: Oxford University Press.Google Scholar
  19. Epprecht, M., Minot, N., Dewina, R., Messerli, P. and Heinimann, A. (2008) The geography of poverty and inequality in the Lao PDR. Vientiane Swiss National Centre of Competence in Research (NCCR) North-South, Geographica Bernensia,Berne, Switzerland, International Food Policy Research Institute (IFPRI), Washington DC, USA.Google Scholar
  20. Filmer, D. and Pritchett, L. H. (2001) Estimating wealth effects without expenditure data–or tears: An application to educational enrollments in states of India. Demography 38(1): 115–132.Google Scholar
  21. Frongillo, E. A. and Nanama, S. (2006) Development and validation of an experience-based measure of household food insecurity within and across seasons in northern Burkina Faso The Journal of Nutrition 136(5): 1409S–1419S.CrossRefGoogle Scholar
  22. Geneva International Centre for Humanitarian Demining. (2010) Landmines and Land Rights in Conflict Affected Contexts. Geneva: GICHD.Google Scholar
  23. Geneva International Centre for Humanitarian Demining. (2011) Sourcebook on Socio-Economic Survey (1st ed.). Geneva: GICHD.Google Scholar
  24. Glasgow Centre for Population Health. (2012) Putting Asset Based Approaches into Practice: Identification, Mobilisation and Measurement of Assets. Retrieved from Glasgow.Google Scholar
  25. Hagquist, C., Bruce, M. and Gustavsson, P. (2009) Using the Rasch model in nursing research: An introduction and illustrative example International Journal of Nursing Studies 46: 380–393.CrossRefGoogle Scholar
  26. Handicap International. (1997) Living with UXO, Final Report, National Survey on the Socio-Economic Impact of UXO in the Lao PDR. Vientiane, Lao PDR: Handicap International.Google Scholar
  27. Harpikven, K. (2003) Measures for mines: Approaches to impact assessment in humanitarian mine action. Third World Quarterly 24(5): 889–908.CrossRefGoogle Scholar
  28. Harttgen, K. and Klasen, S. (2012) A household-based human development index. World Development 40(5): 878–899.CrossRefGoogle Scholar
  29. Henson, S., Blandon, J. and Cranfield, J. (2010) Difficulty of healthy eating: A Rasch model approach. Social Science and Medicine, 70, 1574–1580.CrossRefGoogle Scholar
  30. Hobart, J. and Cano, S. (2009) Improving the evaluation of therapeutic interventions in multiple sclerosis: The role of new psychometric methods. Health Technology Assessment 13(12).Google Scholar
  31. Holland, P. W. and Wainer, H. (1993) Differential Item Functioning Hilldale, NJ: Lawrence Erlbaum Associates.Google Scholar
  32. Horwood, C. (2003) Ideological and analytical foundations of mine action: Human rights and community impact. Third World Quarterly 24(5): 939–954.CrossRefGoogle Scholar
  33. Hulme, D. and McKay, A. (2005) Identifying and Measuring Chronic Poverty: Beyond Monetary Measures. CPRC Working Paper 30. Retrieved from University of Manchester, UK, 5th Novermber 2012.Google Scholar
  34. Kanbur, R. and Shaffer, P. (2007) Epistemology, normative theory and poverty analysis: Implications for Q-Squared in practice. World Development 35(2): 183–196.CrossRefGoogle Scholar
  35. Kulas, J. T., Stachowski, A. A. and Haynes, B. A. (2008) Middle response functioning in Likert-responses to personality items. Journal of Business and Psychology 22(3): 251–259.CrossRefGoogle Scholar
  36. Linacre, J. M. (1994) Sample size and item calibration stability. Rasch Measurement Transactions 7(28).Google Scholar
  37. Luyt, R. (2012) A framework for mixing methods in quantitative measurement development, validation, and revision: A case study. Journal of Mixed Methods Research 6(4): 294–316.CrossRefGoogle Scholar
  38. Moser, C. and Felton, A. (2007) The Construction of an Asset Index Measuring Asset Accumulation in Ecuador. CPRC Working Paper 87. Retrieved from University of Manchester, UK, accessed 8t February 2016.Google Scholar
  39. Ogden, J. and Lo, J. (2012) How meaningful are data from Likert scales?: An evaluation of how ratings are made and the role of the response shift in the socially disadvantaged. International Journal of Health Psychology 12: 350–361.CrossRefGoogle Scholar
  40. Onwuegbuzie, A., Bustamante, R. M. and Nelson, J. A. (2010) Mixed research as a tool for developing quantitative instruments. Journal of Mixed Methods Research 4: 56–77.CrossRefGoogle Scholar
  41. Oyeyemi, G. M., Adewara, A. A. and Adeyemi, R. A. (2010) Complex survey data analysis: A comparison of SAS, SPSS and STATA. Asian Journal of Mathematics and Statistics 3(1): 33–39.CrossRefGoogle Scholar
  42. Pallant, J. and Tennant, A. (2007) An introduction to the Rasch measurement model: An example using the Hospital Anxiety and Depression Scale (HADS) British Journal of Clinical Psychology 46: 1–18.CrossRefGoogle Scholar
  43. Pornet, C., Delpierre, C., Dejardin, O., Grosclaude, P., Launay, L., Guittet, L., Lang, T. and Launoy, G. (2012) Construction of an adaptable European transnational ecological deprivation index: the French version. Journal of Epidemiology and Community Health 66: 982–989.CrossRefGoogle Scholar
  44. Pradhan, M. and Ravallion, M. (1998) Measuring poverty using qualitative perceptions of welfare. The Review of Economics and Statistics 82(3): 462–471.Google Scholar
  45. Rapkin, B. D. and Schwartz, C. E. (2004) Towards a theoretical model of quality of life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes 2(14).Google Scholar
  46. Rasch, G. (1960) Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago.Google Scholar
  47. Sahn, D. and Stifel, D. (2003) Exploring alternative measures of welfare in the absence of expenditure data. Review of Income and Wealth 49(4): 463–489.CrossRefGoogle Scholar
  48. Saisana, M. and Saltelli, A. (2009) The Multidimensional Poverty Assessment Tool (MPAT): Robustness Issues and Critical Assessment. Rome: International Fund for Agricultural Development.Google Scholar
  49. Samman, E. (2007) Pshychological and subjective well-being: A proposal for internationally comparable indicators. Retrieved from Oxford. http://www.ophi.org.uk/working-paper-number-05/, accessed 2 February 2016.
  50. Scoones, I. (2009) Livelihoods perspectives and rural development. The Journal of Peasant Studies 36(1): 171–196. doi:  10.1080/03066150902820503 CrossRefGoogle Scholar
  51. Sen, A. K. (1999) Development as Freedom. New York: Anchor Books.Google Scholar
  52. Sricharoena, T. and Buchenriederb, G. (2005) Principal Component Analysis of Poverty in Northern Thailand. Paper presented at the Conference on International Agricultural Research for Development Stuttgart-Hohenheim.Google Scholar
  53. Teerakul, N., Villano, R. A., Wood, F. Q. and Mounter, S. W. (2012) A framework for assessing the impacts of community-based enterprises on household poverty. Journal of Enterprising Communities: People and places in the global economy and society 6(1): 5–27.CrossRefGoogle Scholar
  54. Thissen, D., Steinberg, L. and Wainer, H. (1993) Detection of differential item functioning using the parameters of item response models In P. W. Holland and H. Wainer (eds.), Differential Item Functioning. Hillsdale, NJ: Erlbaum, pp. 67–113.Google Scholar
  55. Toole, M. (2004) Information Gathering for Health Program Management: A Training Manual for Applied Epidemiology and Qualitative Studies in the Lao People’s Democratic Republic. Vientiane: Ministry of Public Health.Google Scholar
  56. United Nations. (2012) Country Analysis Report: Lao People’s Democratic Republic. Vientiane: UNDPGoogle Scholar
  57. van Dijk, T. (2011) Livelihoods, capitals and livelihood trajectories: A more sociological conceptualisation. Progress in Development Studies 11(2): 101–117.CrossRefGoogle Scholar
  58. Vyas, S. and Kumaranayake, L. (2006) Constructing socio-economic status indices: How to use principal components analysis. Health Policy and Planning 21(6): 459–468.CrossRefGoogle Scholar
  59. Webb, P., Coates, J., Frongillo, E. A., Rogers, B. L., Swindale, A. and Bilinsky, P. (2006) Measuring household food insecurity: Why it’s so important and yet so difficult to do. The Journal of Nutrition 136(5): 1404S–1408S.CrossRefGoogle Scholar
  60. World Bank. (2006) Poverty Environment Nexus: Sustainable approaches to poverty reduction in Cambodia, Lao PDR and Vietnam. www.worldbank.org/eapenvironment
  61. World Bank. (2014) Lao PDR. Retrieved from http://data.worldbank.org/country/lao-pdr, accessed 2 February, 2014.
  62. Wright, B. D. and Stone, M. H. (1979) Best Test Design. Rasch Measurement. Chicago, IL: MESA Press.Google Scholar
  63. Zoomers, A. and Haan, D. (2005) Exploring the frontier of livelihoods research. Development and Change 36: 27.CrossRefGoogle Scholar

Copyright information

© European Association of Development Research and Training Institutes (EADI) 2017

Authors and Affiliations

  1. 1.School of Public HealthThe University of QueenslandBrisbaneAustralia
  2. 2.Department of HealthCommunicable Disease Branch, Level 3BrisbaneAustralia

Personalised recommendations