Skip to main content
Log in

Mean–variance, mean–VaR, and mean–CVaR models for portfolio selection with background risk

  • Original Article
  • Published:
Risk Management Aims and scope Submit manuscript

Abstract

This paper extends (Jiang et al. in J Bank Finance 34:3055–3060, 2010; Guo in Risk Manag 20(1):77–94, 2018) and others by investigating the impact of background risk on an investor’s portfolio choice in the mean–VaR, mean–CVaR, and mean–variance framework, and analyzes the characterization of the mean–variance, mean–VaR, and mean–CVaR boundaries and efficient frontiers in the presence of background risk. We derive the conditions that the portfolios lie on the mean–variance, mean–VaR, and mean–CVaR boundaries with and without background risk. We show that the MV, VaR, and CVaR boundaries depend on the covariance vector between the returns of the risky assets and that of the background asset and also the variance of the return of the background asset. We develop properties on MV, mean–VaR, and mean–CVaR efficient frontiers. In addition, we establish some new properties for the case with a risk-free security, extend our work to the non-normality situation, and examine the economic implication of the mean–VaR/CVaR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. One could assume that an individual could invest \(\omega_{\rm f}\) of her wealth in financial assets and invest \(\omega_{\rm b} = 1 - \omega_{\rm f}\) in background asset. However, one could make some simple adjustment such that \(\omega_{\rm f} = 1 = \sum_{i=1}^n \omega_i\) and \(\omega_{\rm b} = 1\) as shown in Eq. (2).

References

  • Alexander, G.J., and A.M. Baptista. 2002. Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis. Journal of Economic Dynamics and Control 26 (7–8): 1159–1193.

    Article  Google Scholar 

  • Alexander, G.J., and A.M. Baptista. 2004. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science 50: 1261–1273.

    Article  Google Scholar 

  • Alghalith, M., X. Guo, C.Z. Niu, and W.K. Wong. 2017. Input demand under joint energy and output prices uncertainties. Asia Pacific Journal of Operational Research 34: 1750018.

    Article  Google Scholar 

  • Alghalith, M., X. Guo, W.K. Wong, and L.X. Zhu. 2016. A general optimal investment model in the presence of background risk. Annals of Financial Economics 11 (1): 1650001.

    Article  Google Scholar 

  • Artzner, R., F. Delbaen, J.-M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance 9: 203–228.

    Article  Google Scholar 

  • Bai, Z.D., Y.C. Hui, W.K. Wong, and R. Zitikis. 2012. Evaluating prospect performance: Making a case for a non-asymptotic UMPU test. Journal of Financial Econometrics 10 (4): 703–732.

    Article  Google Scholar 

  • Bai, Z.D., H.X. Liu, and W.K. Wong. 2009. Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory. Mathematical Finance 19 (4): 639–667.

    Article  Google Scholar 

  • Baptista, A.M. 2008. Optimal delegated portfolio management with background risk. Journal of Banking and Finance 32: 977–985.

    Article  Google Scholar 

  • Baptista, A.M. 2012. Portfolio selection with mental accounts and background risk. Journal of Banking and Finance 36: 968–980.

    Article  Google Scholar 

  • Basak, S., and A. Shapiro. 2001. Value-at-risk-based risk management: Optimal policies and asset prices. Review of Financial Studies 14 (2): 371–405.

    Article  Google Scholar 

  • Baumol, W.J. 1963. An expected gain-confidence limit criterion for portfolio selection. Management Science 10: 174–182.

    Article  Google Scholar 

  • Berkowitz, M.K., and J. Qiu. 2006. A further look at household portfolio choice and health status. Journal of Banking and Finance 30: 1201–1217.

    Article  Google Scholar 

  • Bodie, Z., R.C. Merton, and W.F. Samuelson. 1992. Labour supply flexibility and portfolio choice in a life cycle model. Journal of Economic Dynamics and Control 16: 427–449.

    Article  Google Scholar 

  • Broll, U., M. Egozcue, W.K. Wong, and R. Zitikis. 2010. Prospect theory, indifference curves, and hedging risks. Applied Mathematics Research Express 2: 142–153.

    Google Scholar 

  • Broll, U., X. Guo, P. Welzel, and W.K. Wong. 2015. The banking firm and risk taking in a two-moment decision model. Economic Modelling 50: 275–280.

    Article  Google Scholar 

  • Broll, U., J.E. Wahl, and W.K. Wong. 2006. Elasticity of risk aversion and international trade. Economics Letters 92 (1): 126–130.

    Article  Google Scholar 

  • Campbell, J.Y. 2006. Household finance. Journal of Finance 61: 1553–1604.

    Article  Google Scholar 

  • Cocco, J.F. 2005. Portfolio choice in the presence of housing. Review of Financial Studies 18: 535–567.

    Article  Google Scholar 

  • Das, S., H. Markowitz, J. Scheid, and M. Statman. 2010. Portfolio optimization with mental accounts. Journal of Financial and Quantitative Analysis 45: 311–334.

    Article  Google Scholar 

  • Duffie, D., and J. Pan. 1997. An overview of value at risk. Journal of Derivatives 4: 7–49.

    Article  Google Scholar 

  • Edwards, R.D. 2008. Health risk and portfolio choice. Journal of Business and Economic Statistics 26: 472–485.

    Article  Google Scholar 

  • Eichner, T. 2008. Mean variance vulnerability. Management Science 54: 586–593.

    Article  Google Scholar 

  • Eichner, T., and A. Wagener. 2003. Variance vulnerability, background risks, and mean-variance preferences. Geneva Papers on Risk and Insurance Theory 28: 173–184.

    Article  Google Scholar 

  • Eichner, T., and A. Wagener. 2009. Multiple risks and mean-variance preferences. Operations Research 57: 1142–1154.

    Article  Google Scholar 

  • Fan, E., and R. Zhao. 2009. Health status and portfolio choice: Causality or heterogeneity. Journal of Banking and Finance 33: 1079–1088.

    Article  Google Scholar 

  • Guo, X., A. Wagener, W.K. Wong, and L.X. Zhu. 2018. The two-moment decision model with additive risks. Risk Management 20 (1): 77–94.

    Article  Google Scholar 

  • Guo, X., and W.K. Wong. 2016. Multivariate stochastic dominance for risk averters and risk seekers. RAIRO—Operations Research 50 (3): 575–586.

    Article  Google Scholar 

  • Heaton, J., and D. Lucas. 2000. Portfolio choice in the presence of background risk. Economic Journal 110: 1–26.

    Article  Google Scholar 

  • Huang, C.F., and R.H. Litzenberger. 1988. Foundations for financial economics. New York: North-Holland.

    Google Scholar 

  • Hull, J.C., and A. White. 1998. Value-at-risk when daily changes in market variables are not normally distributed. Journal of Derivatives 5: 9–19.

    Article  Google Scholar 

  • Jiang, C.H., Y.K. Ma, and Y.B. An. 2010. An analysis of portfolio selection with background risk. Journal of Banking and Finance 34: 3055–3060.

    Article  Google Scholar 

  • Jorion, P. 2000. Value at risk: The new benchmark for controlling market risk. New York: McGraw-Hill.

    Google Scholar 

  • Lajeri-Chaherli, F. 2002. More on properness: The case of mean-variance preferences. Geneva Papers on Risk and Insurance Theory 27: 49–60.

    Article  Google Scholar 

  • Lajeri-Chaherli, F. 2005. Proper and standard risk aversion in two-moment decision models. Theory and Decision 57 (3): 213–225.

    Article  Google Scholar 

  • Landsman, Z., and E.A. Valdez. 2003. Tail conditional expectations for elliptical distributions. North American Actuarial Journal 7: 55–71.

    Article  Google Scholar 

  • Leung, P.L., H.Y. Ng, and W.K. Wong. 2012. An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment. European Journal of Operational Research 222 (1): 85–95.

    Article  Google Scholar 

  • Li, D., and W.L. Ng. 2000. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance 10 (3): 387–406.

    Article  Google Scholar 

  • Li, X., Z. Qin, and S. Kar. 2010. Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research 202 (1): 239–247.

    Article  Google Scholar 

  • Linsmeier, T.J., and N.D. Pearson. 2000. Value at risk. Financial Analysts Journal 56: 47–67.

    Article  Google Scholar 

  • Lusk, J.L., and K.H. Coble. 2008. Risk aversion in the presence of background risk: Evidence from an economic experiment. Research in Experimental Economics 12: 315–340.

    Article  Google Scholar 

  • Markowitz, H. 1952. Portfolio selection. Journal of Finance 7: 77–91.

    Google Scholar 

  • Merton, R.C. 1969. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics 51: 247–257.

    Article  Google Scholar 

  • Merton, R.C. 1971. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3: 373–413.

    Article  Google Scholar 

  • Merton, R.C. 1972. An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis 7 (4): 1851–1872.

    Article  Google Scholar 

  • Meyer, J. 1987. Two-moment decision models and expected utility maximization. American Economic Review 77: 421–430.

    Google Scholar 

  • Niu, C.Z., W.K. Wong, and Q.F. Xu. 2017. Kappa ratios and (higher-order) stochastic dominance. Risk Management 19 (3): 245–253.

    Article  Google Scholar 

  • Pelizzon, L., and G. Weber. 2009. Efficient portfolios when housing needs change over the life cycle. Journal of Banking and Finance 33: 2110–2121.

    Article  Google Scholar 

  • Rosen, H.S., and S. Wu. 2004. Portfolio choice and health status. Journal of Financial Economics 72: 457–484.

    Article  Google Scholar 

  • Samuelson, P.A. 1969. Portfolio selection by dynamic stochastic programming. Review of Economics and Statistics 51: 239–246.

    Article  Google Scholar 

  • Viceira, L.M. 2001. Efficient portfolio choice for long-horizon investors with nontradable labour income. Journal of Finance 56: 433–470.

    Article  Google Scholar 

  • Wong, W.K. 2007. Stochastic dominance and mean-variance measures of profit and loss for business planning and investment. European Journal of Operational Research 182 (2): 829–843.

    Article  Google Scholar 

  • Wong, W.K., and C. Ma. 2008. Preferences over location-scale family. Economic Theory 37: 119–146.

    Article  Google Scholar 

  • Zhou, X.Y., and D. Li. 2000. Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Applied Mathematics and Optimization 42 (1): 19–33.

    Article  Google Scholar 

  • Zhou, X.Y., and G. Yin. 2003. Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model. SIAM Journal on Control and Optimization 42 (4): 1466–1482.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, Igor Lončarski, and the anonymous referee for constructive comments and suggestions that led to a significant improvement of an early manuscript. The third author would like to thank Robert B. Miller and Howard E. Thompson for their continuous guidance and encouragement. The research is partially supported by the National Natural Science Foundation of China (No. 11601227), The Chinese University of Hong Kong, Asia University, China Medical University Hospital, Hang Seng Management College, Lingnan University, the China Postdoctoral Science Foundation (2017M610058), Ministry of Science and Technology (MOST), Taiwan, and the Research Grants Council (RGC) of Hong Kong (Project Number 12500915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Keung Wong.

Appendix

Appendix

Proof of Proposition 1

We assume that investors are mean–variance optimizers who will solve the following optimization problem for their investment decision making:

$$\min \frac{1}{2}Var(r_{\omega }) \quad {\rm s.t.} \quad \omega^\tau E(r)=\mu \ \ \text{ and } \ \ \omega^\tau I=1$$
(11)

where I is a vector of ones.

Using Lagrange multipliers to solve the two constraints in problem (11), the first-order optimality condition is

$$V\omega +{\rm Cov}(r,r_{\rm b})-\lambda_1E(r)-\lambda_2I=0.$$

Consequently, we can have

$$\omega =V^{-1}(\lambda_1E(r)+\lambda_2I-{\rm Cov}(r,r_{\rm b})).$$
(12)

Plugging Eq. (12) into the constraints in Eq. (11) obtains the following Lagrange multipliers

$$\lambda_1=\frac{C\mu -A+(EC-FA)}{D} \ \ \ \text{ and } \ \ \ \lambda_2=\frac{B-\mu A+(FB-AE)}{D},$$

where \(A=I^\tau V^{-1}E(r)\), \(B=E(r)^\tau V^{-1}E(r)\), \(C=I^\tau V^{-1}I\), \(D=BC-A^2\), \(E={\rm Cov}(r,r_{\rm b})^\tau V^{-1}E(r)\), and \(F={\rm Cov}(r,r_{\rm b})^\tau V^{-1}I\).

Further, for the portfolio q on the mean–variance boundary, we can have

$$\sigma^2_{\omega }= \omega^\tau V\omega +2\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \omega^\tau (\lambda_1E(r)+\lambda_2I-{\rm Cov}(r,r_{\rm b}))+2\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \lambda_1\mu +\lambda_2+\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \lambda_1(\mu +E)+\lambda_2(1+F)-{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \frac{C\mu -A+(EC-FA)}{D}(\mu +E)+\frac{B-\mu A+(FB-AE)}{D}(1+F) -{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \frac{C\mu^2-2(A-EC+FA)\mu -2AE+CE^2-2AEF+B(1+F)^2}{D} -{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \frac{C}{D}(\mu -\frac{A-EC+FA}{C})^2-\frac{C^2E^2-2CEA(1+F)+A^2(1+F)^2}{CD} +\frac{-2AE+CE^2-2AEF+B(1+F)^2}{D}-{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \frac{C}{D}(\mu -\frac{A-EC+FA}{C})^2+a ,$$

where \(a=\frac{(1+F)^2}{C}-{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b})>0\).

Consequently, we can have that portfolio \(\omega\) is on the mean–variance boundary with background risk if and only if

$$\frac{\sigma^2_{\omega }}{a}-\frac{(E(r_{\omega })-E(r_b)-(A-EC+FA)/C)^2}{Da/C}=1,$$

and thus, Proposition 1 follows. \(\square\)

Proof of Proposition 2

Over here, we only prove that the minimum-VaR portfolio is mean–CVaR efficient. The other two assertions of Proposition 2 can be obtained similarly. Assuming \(\omega\) is the minimum-VaR portfolio but is not mean–CVaR efficient. From Definition 8, we notice that there is a portfolio \(\nu\) such that \(E[r_{\nu }]\ge E[r_{\omega }]\) and \(L[t, r_{\nu }]\le L[t, r_{\omega }]\) with at least one of the inequalities holding strictly. As a result, we have

$$V(t, r_{\nu })= z_t\sigma (r_{\nu })-E(r_{\nu })=\frac{z_t}{k_t} \left[ k_t\sigma (r_{\nu })-E(r_{\nu })\right] -(1-\frac{z_t}{k_t})E(r_{\nu }) = \frac{z_t}{k_t}L(t, r_{\nu })-(1-\frac{z_t}{k_t})E(r_{\nu }) < V(t, r_{\omega }).$$

This contradicts the assumption. Hence, the minimum-VaR portfolio is mean–CVaR efficient if it exists. Thus, the assertion of Proposition 2 holds. \(\square\)

Proof of Proposition 3

We first prove that the condition \(z_t>\sqrt{D/C}\) is a necessary and sufficient condition that the minimum-VaR portfolio exists at the \(100t\%\) confidence level. For any mean–variance efficient portfolio \(\omega\), applying Eq. (6), we get

$$E(r_{\omega })=E(r_{\rm b})+\frac{A-EC+FA}{C}+\sqrt{\frac{D}{C}(\sigma^2_{\omega }-a)}.$$
(13)

Now, we have to solve

$$\min_{\omega \in W} V[t; r_{\omega }].$$

Applying Eq. (6), we also know that \(\sigma (r_{\omega_{\sigma }})=\sqrt{a}\). Hence, in order to obtain the VaR of the minimum-VaR portfolio, we use Proposition 2 and both Eqs. (6) and (13) to solve

$$\min_{\sigma \in [\sqrt{a},\infty ]} z_t\sigma -\left( E(r_{\rm b})+\frac{A-EC+FA}{C}+ \sqrt{\frac{D}{C}(\sigma^2-a)}\right).$$
(14)

We note that

$$\frac{\partial \left[ z_t\sigma -\left( E(r_{\rm b})+\frac{A-EC+FA}{C}+ \sqrt{\frac{D}{C}(\sigma^2-a)}\right) \right] }{\partial \sigma } =z_t-\frac{\sigma \sqrt{D/C}}{\sqrt{\sigma^2-a}}.$$
(15)

Clearly, \(\bar{\sigma }=\sqrt{a}\) cannot be used to solve the minimization problem (14) because

$$\lim_{\sigma \rightarrow \sqrt{a}}z_t-\frac{\sigma \sqrt{D/C}}{\sqrt{\sigma^2-a}}=-\infty .$$

Employing Eq. (15), we obtain the following necessary condition for \(\sigma_{\omega_V}\):

$$z_t=\frac{\sigma_{\omega_V}\sqrt{D/C}}{\sqrt{\sigma^2_{\omega_V}-a}}$$

to solve the minimization problem (14).

From the above equation, we can have

$$\sigma^2_{\omega_V}=\frac{az^2_t}{z^2_t-D/C}.$$

Thus, \(z_t>\sqrt{D/C}\) is found to be the necessary condition that the minimum-VaR portfolio exists at the \(100t\%\) confidence level.

We turn to show that \(z_t>\sqrt{D/C}\) is the sufficient condition that The minimum-VaR portfolio exists at the \(100t\%\) confidence level by proving that we are minimizing a convex function. Employing Eq. (15), we get

$$\frac{\partial^2\left[ z_t\sigma -\left( E(r_b)+\frac{A-EC+FA}{C}+ \sqrt{\frac{D}{C}(\sigma^2-a)}\right) \right] }{\partial \sigma^2}= \frac{\partial [z_t-\sigma \sqrt{D/C}/\sqrt{\sigma^2-a}]}{\partial \sigma }= a\sqrt{\frac{D}{C}}\frac{1}{(\sigma^2-a)^{3/2}}>0.$$
(16)

This completes the first part of our proof.

Further, from Eq. (13), we can have, when \(z_t>\sqrt{D/C}\),

$$E(r_{\omega_{V(t)}})=E(r_{\rm b})+\frac{A-EC+FA}{C}+\sqrt{\frac{D}{C}(\frac{aCz^2_t}{Cz^2_t-D}-a)}.$$

\(\square\)

Proof of Corollary 2

For \(m_{L(t)}\), we can have

$$E(r_{\omega_{L(t)}})=E(r_{\rm b})+\frac{A-EC+FA}{C}+\sqrt{\frac{D}{C}(\frac{aCk^2_t}{Ck^2_t-D}-a)}.$$

Note the following equation follows:

$$\frac{\partial E(r_{\omega_{V(t)}})}{\partial z_t}=-\sqrt{Da}\frac{D+Cz^2_t}{Cz^2_t-D}<0.$$

Since \(k_t>z_t\), Corollary 2 follows. \(\square\)

Proof of Proposition 4

We first prove (i). To do so, we need to prove that for every mean–VaR boundary portfolio \(\omega\), we have \(\partial^2 V(t,r_{\omega })/\partial E(r_{\omega })^2>0\). Suppose that \(\omega\) is a mean–VaR boundary portfolio being chosen arbitrarily. Then, employing Eq. (10), we get

$$\sigma_{\omega }=\sqrt{a+\frac{(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)^2}{D/C}}.$$

As a result, we can have

$$\frac{\partial V(t,r_{\omega })}{\partial E(r_{\omega })}= \frac{\partial [z_t\sqrt{a+\frac{(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)^2}{D/C}}-E(r_{\omega })]}{\partial E(r_{\omega })} = \frac{z_tC(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)}{D\sqrt{a+\frac{(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)^2}{D/C}}}-1.$$
(17)

Consequently, we can further have

$$\frac{\partial^2 V(t,r_{\omega })}{\partial E(r_{\omega })^2}= \frac{\partial [z_t\sqrt{a+\frac{(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)^2}{D/C}}-E(r_{\omega })]}{\partial E(r_{\omega })} = \frac{z_tCa}{D\left( a+\frac{(E_{r_{\omega }}-E(r_{\rm b})-(A-EC+FA)/C)^2}{D/C}\right)^{3/2}}>0.$$

Thus, the assertion of the first part of Proposition 4 holds.

Now, we turn to prove (ii). When \(z_t\le \sqrt{D/C}\), employing Eq. (17), we find that for any mean–VaR boundary portfolio, we have \(\frac{\partial V(t,r_{\omega })}{\partial E(r_{\omega })}<0\)\(\omega\). Thus, there exists a portfolio \(\nu \in W\) that has both higher expected return and smaller VaR for any portfolio \(\omega \in W\). Hence, the assertion of the second part of Proposition 4 holds. \(\square\)

Proof of Proposition 5

We assume that the investor is a mean–variance optimizer who solves the following optimization problem for the decision in his/her investment:

$$\min \frac{1}{2}Var(r_{\omega })$$
$${\rm s.t.} \omega^\tau E(r)=\mu -\omega_{\rm f}r_{\rm f} \omega^\tau I=1-\omega_{\rm f},$$
(18)

where \(r_{\omega }=\omega_{\rm f}r_{\rm f}+\omega^\tau r+r_{\rm b}\), I is a vector of ones. .

From constraint Eq. (18), we can have

$$\mu =\omega_{\rm f}r_{\rm f}+\omega^\tau E(r)=(1-\omega^\tau I)r_{\rm f}+\omega^\tau E(r)=\omega^\tau (E(r)-r_{\rm f}I)+r_{\rm f}.$$
(19)

The problem (18) can be handled by using Lagrange multipliers method

$$L=\frac{1}{2}(\omega^\tau V\omega +2\omega^\tau {\rm Cov}(r,r_{\rm b}))+\lambda_1(1-\omega_f-\omega^\tau I)+\lambda_2(\mu -\omega^\tau (E(r)-r_{\rm f}I)-r_{\rm f}).$$

Then, we obtain the following first-order optimality condition:

$$V\omega +{\rm Cov}(r,r_{\rm b})-\lambda_2(E(r)-r_{\rm f}I)=0 \omega_{\rm f}=1-\omega^\tau I.$$

Consequently, we can have

$$\omega =V^{-1}(\lambda_2(E(r)-r_{\rm f}I)-{\rm Cov}(r,r_{\rm b})).$$
(20)

Plugging Eq. (20) into the constraints in Eq. (19) obtains the following Lagrange multipliers

$$\mu -r_{\rm f}=\omega^\tau (E(r)-r_{\rm f}I)=\lambda_2(B-2r_{\rm f}A+r^2_{\rm f}C)-E+r_{\rm f}F.$$

Here \(A=I^\tau V^{-1}E(r),B=E(r)^\tau V^{-1}E(r), C=I^\tau V^{-1}I,D=BC-A^2,E={\rm Cov}(r,r_{\rm b})^\tau V^{-1}E(r),F={\rm Cov}(r,r_{\rm b})^\tau V^{-1}I\). It follows that

$$\lambda_2=\frac{\mu -r_{\rm f}+E-r_{\rm f}F}{B-2r_{\rm f}A+r^2_{\rm f}C}.$$

Further, for the portfolio \(\omega\) on the mean–variance boundary, we can have

$$\sigma^2_{\omega }= \omega^\tau V\omega +2\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b})= \omega^\tau (\lambda_2(E(r)-r_{\rm f}I)-{\rm Cov}(r,r_{\rm b}))+2\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \lambda_2(\mu -r_{\rm f})+\omega^\tau {\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \lambda_2(\mu -r_{\rm f})+\lambda_2E-\lambda_2r_{\rm f}F-{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b}) = \frac{(\mu -r_{\rm f}+E-r_{\rm f}F)^2}{H}+a^*.$$

Here \(H=B-2r_{\rm f}A+r^2_{\rm f}C,a^*=-{\rm Cov}(r,r_{\rm b})^\tau V^{-1}{\rm Cov}(r,r_{\rm b})+{\rm Var}(r_{\rm b})>0\).

Consequently, we can have that portfolio \(\omega\) is on the mean–variance boundary with background risk if and only if

$$\frac{\sigma^2_{\omega }}{a^*}-\frac{(E(r_{\omega })-E(r_{\rm b})-(r_{\rm f}+r_{\rm f}F-E))^2}{Ha^*}=1,$$

and thus, Proposition 5 follows. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Chan, R.H., Wong, WK. et al. Mean–variance, mean–VaR, and mean–CVaR models for portfolio selection with background risk. Risk Manag 21, 73–98 (2019). https://doi.org/10.1057/s41283-018-0043-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41283-018-0043-2

Keywords

JEL Classification

Navigation