Advertisement

Inflation in Argentina: Analysis of Persistence Using Fractional Integration

  • Mateo Isoardi
  • Luis A. Gil-AlanaEmail author
Original Article
  • 3 Downloads

Abstract

This paper deals with the analysis of the persistence in the inflation rate in Argentina. For this purpose, we use fractionally integrated techniques based on monthly and annual data. The results show evidence of fractional integration and long memory behavior in both cases, being especially noticeable in the case of monthly data with shocks having long-lived effects.

Keywords

Inflation Argentina Persistence Fractional integration 

JEL Classification

C22 E31 

Notes

Acknowledgements

Luis A. Gil-Alana gratefully acknowledges financial support from the Ministerio de Economía y Competitividad (ECO2017-85503-R). There are no ethical issues or conflicts of interest concerning this paper. Comments from the editor and two anonymous reviewers are gratefully acknowledged.

References

  1. Abadir, Karim M., Walter Distaso, and Liudas Giraitis. 2007. Nonstationarity-extended local Whittle estimation. Journal of Econometrics 141: 1353–1384.CrossRefGoogle Scholar
  2. Andrews, Donald W.K., and Hong-Yuan Chen. 1994. Approximately median-unbiased estimation of autoregressive models. Journal of Business and Economic Statistics 12 (2): 187–204.Google Scholar
  3. Bai, J. and Perron, P. 2003. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18: 1–22.CrossRefGoogle Scholar
  4. Baillie, Robert T. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73: 5–59.CrossRefGoogle Scholar
  5. Baillie, Richard T., Ching-Fan Chung, and Margie A. Tieslau. 1996. Analysing inflation by the fractionally integrated ARFIMA-GARCH model. Journal of Applied Econometrics 11: 23–40.CrossRefGoogle Scholar
  6. Baum, Christopher G., John T. Barkoulas, and Mustafa Caglayan. 1999. Persistence in international inflation rates. Southern Economic Journal 65: 900–913.CrossRefGoogle Scholar
  7. Beran, Jan, Rajendra J. Bhansali, and Dirk Ocker. 1998. On unified model selection for stationary and nonstatioinary short and long memory autoregressive processes. Biometrika 85: 921–934.CrossRefGoogle Scholar
  8. Ben Nasr, Ahdi, Adnen, N. Ajmi, and Rangan Gupta. 2014. Modeling the volatility of the Dow Jones Islamic market world index using a fractionally integrated time varying GARCH (FITVGARCH) model. Applied Financial Economics 24: 993–1004.CrossRefGoogle Scholar
  9. Bloomfield, Peter. 1973. An exponential model in the spectrum of a scalar time series. Biometrika 60: 217–226.CrossRefGoogle Scholar
  10. Canarella, Giorgio, and Stephen M. Miller. 2017. Inflation persistence before and after targeting. A fractional integration approach. Eastern Economic Journal 43(1): 78–103.CrossRefGoogle Scholar
  11. Capistrán, Carlos and Manuel Ramos-Francia. 2006. Inflation dynamics in Latin America. Banco de México Working Papers No. 2006-11.Google Scholar
  12. Carcel, Hector, and Luis A. Gil-Alana. 2018. Inflation analysis in the Central America Monetary Council. Empirical Economics 54(2): 547–565.CrossRefGoogle Scholar
  13. Chitarroni, Horacio. 2014. Antagonismos sociales e inflación en la Argentina. Buenos Aires: Fabro.Google Scholar
  14. D’Amato, Laura, and Maria L. Garegnani. 2013. ¿Cuán persistente es la inflación en Argentina?: regímenes inflacionarios y dinámica de precios en los últimos 50 años, “Dinámica inflacionaria, persistencia y formación de precios y salarios. CEMLA, México, 2013, 91-115.Google Scholar
  15. D´Amato, Laura, Maria L. Garegnani and J.M. Sotes Paladino. 2007. Inflation persistence and changes in the monetary regime: The argentine case. Estudios BCRA Working Paper 2007/23.Google Scholar
  16. D’Amato, Laura, Maria L. Garegnani and J.M. Sotes Paladino. 2008. Dinámica inflacionaria y persistencia: Implicaciones para la política monetaria. Ensayos económicos del Banco Central de Argentina, (Enero-Marzo 2008).Google Scholar
  17. Diebold, Francis X., and Atsushi Inoue. 2001. Long memory and regime switching. Journal of Econometrics 105: 131–159.CrossRefGoogle Scholar
  18. Gadea, Maria, and Laura Mayoral. 2005. The persistence of inflation in OECD countries: A fractionally integrated approach. International Journal of Central Banking 1(8): 51–104.Google Scholar
  19. Gil-Alana, Luis A. 2004. The use of Bloomfield (1973) model as an approximation to ARMA processes in the context of fractional integration. Mathematical and Computer Modelling 39: 429–436.CrossRefGoogle Scholar
  20. Gil-Alana, Luis A. 2008. Fractional integration and structural breaks at unknown periods of time. Journal of Time Series Analysis 29: 163–185.CrossRefGoogle Scholar
  21. Gil-Alana, Luis A., and Robert Mudida. 2017. CPI and inflation in Kenya. Structural breaks, nonlinearities and dependence. International Economics 150: 72–79.CrossRefGoogle Scholar
  22. Gil-Alana, Luis A., and Peter M. Robinson. 1997. Testing of unit roots and other nonstationary hypotheses in macroeconomic time series. Journal of Econometrics 80: 241–268.CrossRefGoogle Scholar
  23. Granger, Clive W.J. 1980. Long memory relationships and the aggregation of dynamic models. Journal of Econometrics 14: 227–238.CrossRefGoogle Scholar
  24. Granger, Clive W.J. 1981. Some properties of time series data and their use in econometric model specification. Journal of Econometrics. 16: 121–130.CrossRefGoogle Scholar
  25. Granger, Clive W.J., and Namwon Hyung. 2004. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance 11: 399–421.CrossRefGoogle Scholar
  26. Granger, Clive W.J., and Roselyne Joyeux. 1980. An introduction to long memory time series and fractional differencing. Journal of Time Series Analysis 1: 15–29.CrossRefGoogle Scholar
  27. Hassler, Uwe, and Barbara Meller. 2014. Detecting multiple breaks in long memory. The case of US inflation. Empirical Economics 46(2): 653–680.CrossRefGoogle Scholar
  28. Hassler, Uwe, and Jurgen Wolters. 1995. Long memory in inflation rates: International evidence. Journal of Business and Economic Statistics 13(1): 37–45.Google Scholar
  29. Hosking, Jack R.M. 1981. Fractional differencing. Biometrica 68: 165–176.CrossRefGoogle Scholar
  30. Hyung, Namwon, Philip H. Franses, and Jack Penm. 2006. Structural breaks and long memory in US inflation rates. Do they matter for forecasting? Research in International Business and Finance 20(1): 95–110.CrossRefGoogle Scholar
  31. Kumar, Manmohan S., and Tatsuyoshi Okimoto. 2007. Dynamics of persistence in international inflationa rates. Journal of Money, Credit and Banking 39(6): 1457–1479.CrossRefGoogle Scholar
  32. Lemus, Diego and Elkin Castaño. 2013. Prueba de hipótesis sobre la existencia de una raíz fraccional en una serie de tiempo no estacionaria. Lecturas de Economía—No. 78., Medellín, pp. 151–184.Google Scholar
  33. MacDonald, Ronald, and Phil D. Murphy. 1989. Testing for the long run relationship between nominal interest rates and inflation using cointegration techniques. Applied Economics 21: 439–447.CrossRefGoogle Scholar
  34. Marques, Carlos. 2004. Inflation Persistence: Facts or Artefacts. European Central Bank. Working paper series., Nro 371.Google Scholar
  35. Michelacci, Claudio, and Paolo Zaffaroni. 2000. (Fractional) beta convergence. Journal of Monetary Economics 45: 129–153.CrossRefGoogle Scholar
  36. Miles, David, K., Ugo Panizza, Ricardo Reis and Angel J. Ubide. 2017. And yet it moves: Inflation and the Great Recession. Geneva Reports on the World Economy 19, International Center for Monetary and Banking Studies, CEPR Press.Google Scholar
  37. Pastor Rueda, J.M. 2014. Dinámica Inflacionaria y Persistencia: Argentina 1980–2013.Google Scholar
  38. Robinson, Peter M. 1994. Efficient tests of nonstationary hypotheses. Journal of the American Statistical Association 89(428): 1420–1437.CrossRefGoogle Scholar
  39. Robinson, Peter M. 1995. Gaussian semi-parametric estimation of long range dependence. Annals of Statistics 23: 1630–1661.CrossRefGoogle Scholar
  40. Shimotsu, Katsumi, and Peter C.B. Phillips. 2005. Exact local Whittle estimation of fractional integration. Annals of Statistics 33(4): 1890–1933.CrossRefGoogle Scholar
  41. Velasco, Carlos. 1999. Gaussian semiparametric estimation of non-stationary time series. Journal of Time Series Analysis 20(1): 87–127.CrossRefGoogle Scholar

Copyright information

© EEA 2019

Authors and Affiliations

  1. 1.International University of AndaluciaHuelvaSpain
  2. 2.Faculty of Economics and NCIDUniversity of NavarraPamplonaSpain

Personalised recommendations