Risk Management

, Volume 20, Issue 3, pp 258–272 | Cite as

Risk and return of a trend-chasing application in financial markets: an empirical test

  • Jukka IlomäkiEmail author
Original Article


The paper introduces an application of the moving average trend-chasing rule that effectively reduces the risk of portfolios. The results are fairly robust: all our moving average lags produce about 36% (34%) less Value-at-Risk and about 31% (30%) less expected shortfall without giving up any returns on average after transaction costs compared to the buy-and-hold strategy, calculated in local currencies (in U.S. dollars). In addition, the paper finds that the volatility of returns follows a similar pattern by producing on average 29% (30%) less volatility in local currencies (in U.S. dollars). Moreover, the CAPM betas of the trading rule are significantly lower (50%) than in the buy-and-hold strategy.


Value-at-Risk Expected shortfall Volatility Investment decision Stock returns 

JEL Classification

G02 G11 G32 



I greatly acknowledge the helpful comments of Hannu Laurila, the editor, and two anonymous referees.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. Acerbi, C., and D. Tasche. 2002. On the coherence of expected shortfall. Journal of Banking & Finance 26 (7): 1487–1503.CrossRefGoogle Scholar
  2. Allen, F., and R. Karjalainen. 1999. Using genetic algorithms to find technical trading rules. Journal of Financial Economics 51: 245–271.CrossRefGoogle Scholar
  3. Ang, A., and G. Bekaert. 2007. Stock return predictability: is it there? Review of Financial Studies 20 (3): 651–707.CrossRefGoogle Scholar
  4. Ang, A., R. Hodrick, Y. Xing, and X. Zhang. 2006. The cross-section of volatility and expected returns. Journal of Finance 61 (1): 259–299.CrossRefGoogle Scholar
  5. Ang, A., R. Hodrick, Y. Xing, and X. Zhang. 2009. High idiosyncratic volatility and low returns: international and further U.S. evidence. Journal of Financial Economics 61: 1–23.CrossRefGoogle Scholar
  6. Artzner, P., F. Delbaen, J. Eber, and D. Heath. 1999. Coherent measure of risk. Mathematical Finance 9 (3): 203–228.CrossRefGoogle Scholar
  7. Baker, M., B. Bradley, and J. Wurgler. 2011. Benchmark as limits to arbitrage: understanding the low-volatility anomaly. Financial Analysts Journal 67 (1): 1–15.CrossRefGoogle Scholar
  8. Brock, W., J. Lakonishok, and B. LeBaron. 1992. Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance 47 (5): 1731–1764.CrossRefGoogle Scholar
  9. Cabedo, J., and I. Moya. 2003. Estimating oil price value at risk using the historical simulation approach. Energy Economics 25 (3): 239–253.CrossRefGoogle Scholar
  10. Campbell, J., and M. Yogo. 2006. Efficient test of stock returns predictability. Journal of Financial Economics 81: 27–60.CrossRefGoogle Scholar
  11. Campbell, J., and S. Thompson. 2008. Predicting excess returns out of sample: can anything beat the historical average? Review of Financial Studies 21 (4): 1509–1532.CrossRefGoogle Scholar
  12. Cochrane, J. 2008. The dog that did not bark: a defense of return predictability. Review of Financial Studies 21 (4): 1533–1573.CrossRefGoogle Scholar
  13. Diaz, A., G. Garcia-Donato, and A. Mora-Valencia. 2017. Risk quantification in turmoil markets. Risk Management 19 (3): 202–224.CrossRefGoogle Scholar
  14. Gartley, H. 1935. Profits in the stock markets. Washington: Lambert-Gann Publishing.Google Scholar
  15. Han, Y., K. Yang, and G. Zhou. 2013. A new anomaly: cross-sectional profitability of technical analysis. Journal of Financial and Quantitative Analysis 48 (5): 1433–1461.CrossRefGoogle Scholar
  16. Hjalmarsson, E. 2010. Predicting global stock returns. Journal of Financial and Quantitative Analysis 45 (1): 49–80.CrossRefGoogle Scholar
  17. Jensen, M. 1967. The performance of mutual funds in the period 1945–1964. Journal of Finance 23 (2): 389–416.CrossRefGoogle Scholar
  18. Lo, A., H. Mamaysky, and J. Wang. 2000. Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. Journal of Finance 54 (4): 1705–1770.CrossRefGoogle Scholar
  19. Maio, P. 2014. Don’t fight the Fed! Review of Finance 18 (2): 623–679.CrossRefGoogle Scholar
  20. Moskowitz, T., Y. Ooi, and L. Pedersen. 2012. Time series momentum. Journal of Financial Economics 104: 228–250.CrossRefGoogle Scholar
  21. Nelson, D. 1991. Conditional heteroskedasticity in asset returns. Econometrica 59 (2): 347–370.CrossRefGoogle Scholar
  22. Sharpe, W. 1964. Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance 19 (3): 425–442.Google Scholar
  23. Sullivan, R., A. Timmermann, and H. White. 1999. Data-snooping, technical trading rule performance and the bootstrap. Journal of Finance 53 (5): 1647–1691.CrossRefGoogle Scholar
  24. Yamai, Y., and T. Yoshiba. 2005. Value-at-risk versus expected shortfall: a practical perspective. Journal of Banking & Finance 29 (4): 997–1015.CrossRefGoogle Scholar
  25. Zhu, Y., and G. Zhou. 2009. Technical analysis: an asset allocation perspective on the use of moving averages. Journal of Financial Economics 91: 519–544.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ManagementUniversity of TampereTampereFinland

Personalised recommendations