Journal of the Operational Research Society

, Volume 68, Issue 12, pp 1491–1502 | Cite as

Characterization of order dominances on fuzzy variables for portfolio selection with fuzzy returns

  • Christian Deffo Tassak
  • Jules Sadefo KamdemEmail author
  • Louis Aimé Fono
  • Nicolas Gabriel Andjiga


Peng et al (Int J Uncertain Fuzziness Knowl Based Syst 15:29–41, 2007) introduced, by means of the credibility measure, two dominance relations on fuzzy variables, namely the first- and the second-order dominances. In this paper, we characterize each of these dominance relations, and we justify that they satisfy six well-known properties of comparison methods. We propose a Game Theory approach for the determination of optimal portfolios when returns are fuzzy by introducing the set of best portfolios with respect to the first- and the second-order dominances. Based on the characterization of the first-order dominance, we numerically display some of the best portfolios of the classical set of portfolios of seven independent assets described by triangular fuzzy numbers.


credibility measure fuzzy variable first-order dominance second-order dominance set of best portfolios 


  1. Bilbao-Terol A., Arenas-Parra M., Cañal-Fernández V. and Jiménez M. (2016): A sequential goal programming model with fuzzy hierarchies to sustainable and responsible portfolio selection problem. Journal of the Operational Research Society, 67(10):1259–1273.CrossRefGoogle Scholar
  2. Brogan J.A. and Stidham S.Jr (2008): Non-separation in the mean-lower-partial-moment portfolio optimization problem, European Journal of Operational Research, 184(2):701–710.CrossRefGoogle Scholar
  3. Chen I-F. and Tsaur R-C. (2016): Fuzzy portfolio selection using a weighted function of possibilistic mean and variance in business cycles, International Journal of Fuzzy Systems, 18(2):151–159.CrossRefGoogle Scholar
  4. Cheng S-M, Munif A., Cheng G-S, Liu H-C. and Kuo B-C. (2012): Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights, Expert Systems With Applications, 39(7):6320–6334.CrossRefGoogle Scholar
  5. Chu T-C and Tsao C-T. (2002): Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications, 43(1–2):111–117.CrossRefGoogle Scholar
  6. Dentcheva D. and Ruszczynski A. (2004): Semi-infinite probabilistic optimization: First-order stochastic dominance constraint, Optimization, 53(5–6):583–601.CrossRefGoogle Scholar
  7. Detyniecki M. and Yager R. (2001): Ranking fuzzy numbers using α-weighted valuations, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8(5):573.CrossRefGoogle Scholar
  8. Georgescu I. and Kinnunen J. (2013): A Risk Approach by Credibility Theory, Springer-Verlag Berlin Heidelberg and Fuzzy Information and Engineering Branch of the Operation Research Society of China, 5(4):399–416.Google Scholar
  9. Grauer R. and Best M. (1991): Sensitivity analysis for mean-variance portfolio problems, Management Science, 37(8):980–989.CrossRefGoogle Scholar
  10. Huang X. (2008): Mean-semivariance models for fuzzy portfolio selection, Journal of Computational and Applied Mathematics, 217(1):1–8.CrossRefGoogle Scholar
  11. Konno H. and Suzuki K. (1995): A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38:137–187.CrossRefGoogle Scholar
  12. Kraus A. and Litzenberger R. (1976): Skewness preference and the valuation of risky assets, Journal of Finance, 31(4):1085–1100.Google Scholar
  13. Kucukbay F. and Araz C. (2016): Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming, An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 6(2):121–128.Google Scholar
  14. Li X., Qin Z. and Kar S. (2010): Mean-variance-skewness model for portfolio selection with fuzzy returns, European Journal of Operational Research, 202(1):239–247.CrossRefGoogle Scholar
  15. Liu B. (2004): Uncertainty theory: An introduction to its axiomatics foundations. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. Liu B. (2014): Uncertainty theory, 4th ed., Springer-Verlag, Berlin.Google Scholar
  17. Liu B. and Liu Y.K. (2002): Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4):445–450.CrossRefGoogle Scholar
  18. Markowitz H. (1952): Portfolio selection,Journal of Finance, 7(1):77–91.Google Scholar
  19. Osuna E. (2012): Crossing points of distribution and a theorem that relates them to second order stochastic dominance. Statistics and Probability Letters, 82(4):758–764.CrossRefGoogle Scholar
  20. Peng J., Mok H. and Tse W. (2005): Fuzzy dominance based on credibility distributions. Springer-Verlag, Berlin, 295–303.Google Scholar
  21. Peng J., Jiang Q. and Rao C. (2007): Fuzzy dominance: a new approach for ranking fuzzy variables via credibility measure. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(supp02):29–41.CrossRefGoogle Scholar
  22. Saborido R., Ruiz A., Bermúdez J., Vercher E. and Luque M. (2016): Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39(c):48–63.CrossRefGoogle Scholar
  23. Sadefo Kamdem J, Tassak DC, Fono LA (2012) Moments and semi-moments for fuzzy portfolio selection. Insurance Mathematics and Economics, 51(3):517–530Google Scholar
  24. Saeidifar A. (2011): Application of weighting functions to the ranking of fuzzy numbers. Computers and Mathematics With Applications, 62(5):2246–2258.CrossRefGoogle Scholar
  25. Samuelson P. (1970): The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments, Reviews of Economics Studies, 37(4):537–542.CrossRefGoogle Scholar
  26. Sengupta J. (1989): Portfolio decision as games, International Journal of Systems Science, 20(8):1323–1334.CrossRefGoogle Scholar
  27. Sharpe W. (1971): A linear programming approximation for the general portfolio analysis problem, Journal of Financial and Quantitative Analysis, 6(5):1263–1275.CrossRefGoogle Scholar
  28. Tobin J. (1965): The theory of portfolio selection, in F.H. Hahn and F.P.R. Brechling, eds., The Theory of Interest Rates, LondonGoogle Scholar
  29. Wang X. and Kerre E. (2001): Reasonable properties for the ordering of fuzzy quantities, Fuzzy Sets and Systems, 118(3):375–385.CrossRefGoogle Scholar
  30. Zadeh L.A. (1978): Fuzzy set as a basis of theory of possibility, Fuzzy Sets and Systems, 1(1):3–28.CrossRefGoogle Scholar

Copyright information

© The Operational Research Society 2017

Authors and Affiliations

  • Christian Deffo Tassak
    • 1
  • Jules Sadefo Kamdem
    • 2
    • 3
    Email author
  • Louis Aimé Fono
    • 4
  • Nicolas Gabriel Andjiga
    • 5
  1. 1.Laboratoire de Mathématiques et Applications Fondamentales, UFDR MIBA - CRFD STGUniversité de Yaoundé IYaoundéCameroon
  2. 2.LAMETA CNRS UMR 5474 (Montpellier)MontpellierFrance
  3. 3.DFR SJE, Campus de TroubiranUniversité de GuyaneCayenne CedexFrance
  4. 4.Laboratoire de Mathématiques et Faculté des SciencesUniversité de DoualaDoualaCameroun
  5. 5.Laboratoire de Mathématiques et Applications Fondamentales, UFDR MIBA - CRFD STG et ENS YaoundéUniversité de Yaoundé IYaoundéCameroon

Personalised recommendations