Skip to main content

Variation in the pith parameter of Gmelina arborea trees from fast growth plantations in Costa Rica

Variation des caractéristiques de la moelle des arbres de Gmelina arborea issus de plantations à croissance rapide au Costa Rica

Abstract

  • • The pith represents the central part of the cross-section of a tree trunk and it is composed of primary parenchyma tissue. And its eccentricity is associated with the presence of reaction wood, which affects trunk straightness, and diminishes the quality of the logs and products.

  • Gmelina arborea trees (8 to 14 years old) from fast growth plantations in Costa Rica were sampled with the purpose of determining diameter, eccentricity and pith percentage as well as pith distance from the real centre of the cross section. These pith parameters were also evaluated in relation to management intensity (intensive, moderate and unmanaged), climate (dry and wet tropical) and tree height.

  • Pith diameter varies from 0.15 to 1.10 cm and is located at 6 cm, at its maximum, around the real centre of the cross section. Percentage eccentricity might reach values of up to 26.5% and this parenchyma tissue represents between 1 and 5% of the total tree diameter.

  • • The level of management had a significant effect on the eccentricity and percentage of the pith, while the climate significantly affected the pith percentage and the distance of pith from the real centre of the cross section. Tree height affected significantly all the parameters evaluated.

Résumé

  • • La moelle représente la partie centrale sur la coupe transversale d’un tronc d’arbre et elle est composée de tissus de parenchyme primaire. La moelle est associée à la présence de bois de réaction, qui affecte la rectitude du tronc, et diminue la qualité des billes de bois et des produits provenant de celles-ci.

  • • Des arbres de Gmelina arborea (âgés de 10 à 12 ans) issus de plantations à croissance rapide au Costa Rica ont été récoltés et étudiés dans le but de déterminer le diamètre, l’excentricité, le pourcentage de moelle, de même que la distance de la moelle au centre réel de la section transversale. Ces caractéristiques de la moelle furent aussi évaluées par rapport au type d’aménagement forestier pratiqué sur ces plantations (intensif, modéré et non aménagé), au climat (tropical sec et humide) et à la hauteur des arbres.

  • • Le diamètre de la moelle varie entre 0,15 et 1,10 cm et se trouve à 6 cm, à son maximum, du centre réel de la section transversale. Le pourcentage d’excentricité pourrait atteindre jusqu’à 26,5 % et les tissus parenchymateux représentent entre 1 et 5 % du diamètre total de l’arbre.

  • • Le niveau d’aménagement forestier a eu un effet significatif sur l’excentricité et sur le pourcentage de moelle, alors que le type de climat a significativement affecté le pourcentage de moelle et la distance de la moelle au centre réel de la section transversale. La hauteur des arbres a, quant à elle, influé de façon significative sur tous les paramètres étudiés.

This is a preview of subscription content, access via your institution.

References

  1. Akachuku A.E. and Abolarin D.A., 1989. Variations in the pith eccentricity and ring width in teak (Tectona grandis L.F.). Trees 3: 111–116.

    Article  Google Scholar 

  2. Albert S. and Shah J.J., 1998. Early ontogeny of vascular meristem in the petiole of Gmelina arborea (Verbenaceae) and Tabebuia rosea (Bignoniaceae). Phytomorphology 48: 187–194.

    Google Scholar 

  3. Archer R.R., 1986. Growth Stresses and Strains in Trees. Springer-Verlag, New York. pp. 150–151.

    Google Scholar 

  4. ASTM (American Society for Testing and Materials), 2003. Standard practice for establishing structural grades and related allowable properties for visually graded lumber D-245-00 (reproved 2002). Annual Book of ASTM Standards, Vol 04.10., Philadelphia, USA, pp. 125–158.

  5. Cassens D.I., 2004. Factors determining the suitability of trees and logs for the face veneer industry. In Proceedings of the 14th Central Hardwood Forest Conference. GTR-NE-316, Proceedings of a Conference held at the Ohio Agriculture Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, March 16–19.

    Google Scholar 

  6. Clair B., Alméras T., and Sugiyama J., 2006. Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann. For. Sci. 63: 507–510.

    Article  Google Scholar 

  7. Constant T., Mothe F., Badia M.A., and Saint-Andre L., 2003. How to relate the standing tree shape to internal wood characteristics: proposal of an experimental method applied to poplar trees. Ann. For. Sci. 60: 371–378.

    Article  Google Scholar 

  8. Cremer K.W., 1998. Recovering of Pinus radiata saplings from tilting and bending. Aust. For. 61: 211–219.

    Google Scholar 

  9. Dumail F. and Castera P., 1997. Transverse shrinkage in maritime pine juvenile wood. Wood Sci. Tech. 31: 251–264.

    Article  CAS  Google Scholar 

  10. Dvorak W.S., 2004. World view of Gmelina arborea: opportunities and challenges. New For. 28: 111–126.

    Article  Google Scholar 

  11. Galloway G., Ugalde L., and Vasquez W., 2001. Importance of density reduction in tropical plantations: Experiences in Central America. Forests Trees and Livelihoods 11: 217–232.

    Google Scholar 

  12. Gartner B., 2005. Assessing wood characteristics and wood quality in intensively managed plantations. J. For. 103: 75–77.

    Google Scholar 

  13. Herrera L., 1990. Clima y vegetación de Costa Rica. Departamento de Historia Natural, Museo Nacional de Costa Rica, 515 p.

  14. Jane F.E., Wilson K., and White D.J., 1970. The structure of wood. Black, London, 216 p.

  15. Kellog R.M. and Barber F.J., 1981. Stem eccentricity in coastal western hemlock. Can. J. For. Res. 11: 714–718.

    Article  Google Scholar 

  16. Koch P., Côté Jr., Schlieter J., and Day A.C., 1990. Incidence of compression wood and stem eccentricity in lodgepole pine of North America. USDA Forest Service, Intermountain Research Station, Research paper INT-420, Ogden, USA, 42 p.

    Google Scholar 

  17. Kucera L.J. and Philipson W.R., 1977. Growth eccentricity and reaction anatomy in branchwood of Drimys einteri and five native New Zealand trees. N.Z. J. Bot. 15: 517–524.

    Google Scholar 

  18. Little S. and Mergen F., 1966. External and internal changes associated with basal-crook formation in the pith and short leaf pines. Forestry 37: 179–201.

    Google Scholar 

  19. Lundgren C., 2000. Predicting log type and knot size category using external log shape data from a 3D log scanner. Scand. J. For. Res. 15: 119–126.

    Article  Google Scholar 

  20. Machado J.S. and Cruz H.P., 2005. Within stem variation of Maritime Pine timber mechanical properties. Holz Roh-Werkst. 63: 154–159.

    Article  Google Scholar 

  21. Manson E.G., 1985. Cause of juvenile instability of Pinus radiata in New Zealand. N.Z. For. Sci. 15: 263–280.

    Google Scholar 

  22. Mikesell J.E. and Schroeder A.C., 1980. Development of chambered pith in stems of Phytolacca americana L. (Phytolaccaceae). Am. J. Bot. 97: 111–118.

    Article  Google Scholar 

  23. Moya R., 2004a. Wood of Gmelina arborea in Costa Rica. New For. 28: 299–317.

    Article  Google Scholar 

  24. Moya R., 2004b. Effect of management treatment and growing regions on wood properties of Gmelina arborea in Costa Rica, New For. 28: 325–330.

    Article  Google Scholar 

  25. Moya R. and Muñoz F., 2008. Wet Pockets in kiln-dried Gmelina arborea lumber. J. Trop. For. Sci. 20: 48–56.

    Google Scholar 

  26. Moya R. and Tomazello M., 2007a. Wood density and fiber dimensions of Gmelina arborea in fast growth trees in Costa Rica: relation to the growth rate. Investig. Agrar. Sist. Recur. For. 16: 267–276.

    Google Scholar 

  27. Moya R. and Tomazello M., 2007b. Relationship between anatomical features and intra-ring wood density profiles in Gmelina arborea applying X-ray densitometry. Cerne 13: 384–392.

    Google Scholar 

  28. Rune G. and Warensjö M., 2002. Basal sweep and compression wood in young Scots pine trees. Scand. J. For. Res. 17: 529–537.

    Article  Google Scholar 

  29. Saint-André L. and Leban J.M., 2001. A model for the position and ring eccentricity in transverse sections of Norway spruce logs. Holz Roh-Werkst. 59: 137–144.

    Article  Google Scholar 

  30. Singleton R., DeBell D.S., Marshall D.D., and Gartner B.L., 2003. Eccentricity and fluting in young-growth western hemlock in Oregon. West J. Appl. For. 18: 221–228.

    Google Scholar 

  31. Skatter S.H. and Gjerdrum P., 1998. Simulated yield in a sawmill using different measurement technologies, Holz Roh-Werkst. 56: 267–274.

    Article  Google Scholar 

  32. Snepthorne L. and Cochran E., 1980. Statistical methods. The Iowa State University Press, 7th ed., IOWA, USA, 615 p.

    Google Scholar 

  33. Timell T.E., 1986. Compression wood in gymnosperms, Vols. 1–3. Springer Verlag, Berlin Heidelberg, New York, 425 p.

    Google Scholar 

  34. Warensjö M. and Rune G., 2004. Stem straightness and compression wood in a 22-year-old stand of container-grown Scots pine trees. Silva Fenn. 38: 143–153.

    Google Scholar 

  35. Williamson R.W., 1975. Out-of-roundness in Douglas-fir stems. For. Sci. 21: 365–370.

    Google Scholar 

  36. Zobel B. and Van Buijtenen B., 1989. Wood variation: its causes and control. Springer Verlag, New York, 415 p.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger Moya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moya, R., Araya, L. & Vilchez, B. Variation in the pith parameter of Gmelina arborea trees from fast growth plantations in Costa Rica. Ann. For. Sci. 65, 612 (2008). https://doi.org/10.1051/forest:2008045

Download citation

  • stem eccentricity
  • pith percentage
  • stem form
  • lumber quality
  • excentricité de la tige
  • pourcentage de la moelle
  • forme de la tige
  • qualité du bois