Skip to main content
Log in

Modulation of leaf physiology by age and in response to abiotic constraints in young cuttings of two Populus deltoides × P. nigra genotypes

Modulation par l’âge et en réponse à des contraintes abiotiques de la physiologie des feuilles de jeunes boutures de deux génotypes de Populus deltoides × P. nigra

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • It is of importance, when comparing physiological responses of leaves to environmental constraints among different genotypes, to take into account any effect related to leaf position and age within the canopy that might interfere with the response to the constraints.

  • • To document such effects, photosynthetic capacity and tolerance to heat and to oxidation were measured on leaves from the top to the bottom of three-month-old single-stem rooted cuttings of Populus deltoides × P. nigra genotypes, ‘Dorskamp’ and ‘Luisa_Avanzo’, thus taking into account a gradient of ages from youngest and still expanding (top) to oldest and fully expanded (bottom) leaves.

  • • All recorded traits were tightly linked to the age of the leaves. Photosynthetic capacity gradually increased during leaf expansion, in parallel with chlorophyll content and relative nitrogen allocation to RuBisCO and to bioenergetics. On the contrary, dark respiration gradually decreased during leaf expansion until a minimum value was reached at maturity. Compared to expanding leaves, young mature leaves were characterized by a lower sensitivity to heat and a higher one to oxidations generated by methyl-viologen.

  • • Leaf characteristics appeared to vary along the stem to a larger extent than between the two genotypes that display largely different productivities in plantations.

Résumé

  • •Pour comparer de manière fiable la réponse physiologique de feuilles de différents génotypes aux contraintes abiotiques, il est important de prendre en compte les effets liés à la position et à l’âge des feuilles au sein de la canopée pouvant interférer avec la réponse à la contrainte.

  • •Afin de documenter de tels effets, les capacités photosynthétiques et la tolérance à la chaleur et aux oxydations ont été mesurées sur des feuilles réparties tout le long de la tige de boutures de 3 mois des génotypes de Populus deltoides × P. nigra, ‘Luisa_Avanzo’ et ‘Dorskamp’.

  • •Tous les traits mesurés présentaient une forte variabilité liée à l’âge des feuilles. Les capacités photosynthétiques augmentaient graduellement durant l’expansion foliaire, en parallèle avec les teneurs en chlorophylles et avec l’allocation d’azote à la RuBisCO et au transfert photosynthétique d’électrons. Au contraire, la respiration diminuait graduellement durant l’expansion foliaire jusqu’à ce qu’une valeur minimum soit atteinte à maturité de la feuille. En comparaison avec les feuilles en croissance, les jeunes feuilles matures étaient caractérisées par une tolérance plus grande à la chaleur et plus faible aux oxydations générées par du méthylviologène.

  • •Les caractéristiques foliaires variaient plus le long de la tige qu’entre les deux génotypes, pourtant connus pour leurs différences de niveau de productivité en plantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPI:

leaf plastochron index

W :

leaf width (cm)

A :

leaf area (cm2)

SLA:

specific leaf area (cm2 g −1DW )

A:

assimilation rate (μmolCO2 m−2 s−1)

ca :

atmospheric CO2 partial pressure (Pa)

ci :

partial pressure in the substomatal cavities (Pa)

Jmax :

maximal light driven electron flow (μmole− m−2 s−1)

PB :

fraction leaf nitrogen invested into bioenergetics

PR :

fraction leaf nitrogen invested into RuBisCO

Rd :

dark respiration (μmolCO2 m−2 s−1)

Vcmax :

maximal carboxylation rate (μmolCO2 m−2 s−1)

VcmaxApp :

apparent Vcmax, values not taking into account the internal conductance to CO2 transfer

TC :

critical temperature for PS II stability (°C)

F0 :

initial fluorescence

Fm :

maximal fluorescence

Fv :

variable fluorescence

References

  • Bilger H.W., Schreiber U., and Lange O.L., 1984. Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia 63: 256–262.

    Article  Google Scholar 

  • Brignolas F., Thierry C., Guerrier G., and Boudouresque E., 2000. Compared water deficit response of two Populus × euramericana clones, Luisa Avanzo and Dorskamp. Ann. For. Sci. 57: 261–266.

    Article  Google Scholar 

  • Ceulemans R., 1990. Genetic variation in functional and structural productivity determinants in poplar. Thesis Publishers, Amsterdam.

    Google Scholar 

  • Ceulemans R., Impens I., and Steenackers V., 1988. Genetic variation in aspects of leaf growth of Populus clones, using the leaf plastochron index. Can. J. For. Res. 18: 1069–1077.

    Article  Google Scholar 

  • Ceulemans R. and Isebrands J.G., 1996. Carbon acquisition and allocation. In: Stettler R.F., Bradshaw, H.D. Jr., Heilman P.E., Hinckley T.M. (Eds.), Biology of Populus and its implications for management and conservation, NRC Research Press, National Research Council of Canada, Ottawa, pp. 355–392.

    Google Scholar 

  • Coleman M.D., Dickson R.E., Isebrands J.G., and Karnosky D.F., 1996. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiol. 16: 145–152.

    PubMed  CAS  Google Scholar 

  • Coll L., Messier C., Delagrange S., and Berninger F., 2007. Growth, allocation and leaf gas exchanges of hybrid poplar plants in their establishment phase on previously forested sites: effect of different vegetation management techniques. Ann. For. Sci. 64: 275–285.

    Article  Google Scholar 

  • Dickmann D.I., 1971. Photosynthesis and respiration by developing leaves of cottonwood (Populus deltoides Bartr.). Bot. Gaz. 132: 253–259.

    Article  Google Scholar 

  • Dickson R.E., 1986. Carbon fixation and distribution in young Populus trees. In: Fujimori, T., Whitehead, D. (Eds.), Crown and canopy structure in relation to productivity, forestry and forest products, Research Institute, Ibaraki, pp. 409–426.

    Google Scholar 

  • Dreyer E., Le Roux X., Montpied P., Daudet F.A., and Masson F., 2001. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 21: 223–232.

    PubMed  CAS  Google Scholar 

  • Erickson R.O. and Michelini F.J., 1957. The plastochron index. Am. J. Bot. 44: 297–305.

    Article  Google Scholar 

  • Evans J.R. and Poorter H., 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24: 755–767.

    Article  CAS  Google Scholar 

  • Froux F., Ducrey M., Epron D., and Dreyer E., 2004. Seasonal variations and acclimation potential of the thermostability in four Mediterranean conifers. Ann. For. Sci. 61: 235–241.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.M., and Baker N.R., 1987. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.

    Google Scholar 

  • Gonzalez-Real M.M. and Baille A., 2000. Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida). Plant Cell Environ. 23: 351–363.

    Article  Google Scholar 

  • Isebrands J.G. and Larson P.R., 1977. Organization and ontogeny of the vascular cambium in the petiole of eastern cottonwood. Am. J. Bot. 64: 65–77.

    Article  Google Scholar 

  • Larson P.R. and Gordon J.C., 1969. Leaf development, photosynthesis and 14C distribution in Populus deltoides seedlings. Am. J. Bot. 56: 1058–1066.

    Article  CAS  Google Scholar 

  • Larson P.R. and Isebrands J.G., 1971. The plastochron index as applied to developmental studies of cottonwood, Can. J. For. Res. 1: 1–11.

    Article  Google Scholar 

  • Logan B.A. and Monson R.K., 1999. Thermotolerance of leaf disks from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene. Plant Physiol. 120: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Marron N., Delay D., Petit J.-M., Dreyer E., Kahlem G., Delmotte F.M., and Brignolas F., 2002. Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol. 22: 849–858.

    PubMed  CAS  Google Scholar 

  • Marron N., Dreyer E., Boudouresque E., Delay D., Petit J.-M., Delmotte F.M., and Brignolas F., 2003. Impact of successive drought and rewatering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa_Avanzo’. Tree Physiol. 23: 1225–1235.

    PubMed  Google Scholar 

  • Marron N., Maury S., Rinaldi C., and Brignolas F., 2006. Impact of drought and leaf development stage on enzymatic antioxidant system of two Populus deltoides × nigra clones. Ann. For. Sci. 63: 323–327.

    Article  CAS  Google Scholar 

  • McKinney G., 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315–322.

    Google Scholar 

  • Mediavilla S. and Escudero A., 2003. Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytol. 159: 203–211.

    Article  Google Scholar 

  • Miyazawa S.-I. and Terashima I., 2001. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant Cell Environ. 24: 279–291.

    Article  CAS  Google Scholar 

  • Nautiyal P.C., Rachaputi N.R., and Joshi Y.C., 2002. Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crop. Res. 74: 67–79.

    Article  Google Scholar 

  • Nelson N.D. and Isebrands J.G., 1983. Late-season photosynthesis and photosynthetate distribution in an intensively cultured Populus nigra × laurifolia clone. Photosynthetica 17: 537–549.

    Google Scholar 

  • Niinemets Ü., 1999. Research review. Components of leaf dry mass per area — thickness and density — alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144: 35–57.

    Article  Google Scholar 

  • Niinemets Ü., 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82: 453–469.

    Article  Google Scholar 

  • Niinemets Ü., and Tenhunen J.D., 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20: 845–866.

    Article  Google Scholar 

  • Niinemets Ü., Cescatti A., Rodeghiero M., and Tosens T., 2005. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ. 28: 1552–1566.

    Article  Google Scholar 

  • Reich P.B., 1983. Effects of low concentrations of O3 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol. 73: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Schumaker M.A., Bassman J.H., Robberecht R., and Radamaker G.K., 1997. Growth, leaf anatomy, and physiology of Populus clones in response to solar ultraviolet-B radiation. Tree Physiol. 17: 617–626.

    PubMed  Google Scholar 

  • Smirnoff N., 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Soulères G., 1992. Les milieux de la populiculture. IDF, Paris.

    Google Scholar 

  • Van Arendonk J.J.M.C. and Poorter H., 1994. The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ. 17: 963–970.

    Article  CAS  Google Scholar 

  • Van Volkenburgh E. and Taylor G., 1996. Leaf growth physiology. In: Stettier R.F., Bradshaw H.D.Jr, Heilman P.E., Hinckley T.M. (Eds.), Biology of Populus and its implications for management and conservation, NRC Research Press, National Research Council of Canada, Ottawa, pp. 283–299.

    Google Scholar 

  • Warren C.R., 2006a. Estimating the internal conductance to CO2 movement. Funct. Plant Biol. 33: 431–442.

    Article  CAS  Google Scholar 

  • Warren C.R., 2006b. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees 20: 157–164.

    Article  Google Scholar 

  • Wright I.J. and Cannon K., 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351–359.

    Article  Google Scholar 

  • Yamane Y., Kashino Y., Koike H., and Satoh K., 1997. Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth. Res. 52: 57–64.

    Article  CAS  Google Scholar 

  • Zelawski W. and Walker R.B., 1976. Photosynthesis, respiration, and dry matter production. In: Miksche J.P (Ed.), Modern methods of forest genetics, Springer-Verlag, New York, pp. 89–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Brignolas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marron, N., Brignolas, F., Delmotte, F.M. et al. Modulation of leaf physiology by age and in response to abiotic constraints in young cuttings of two Populus deltoides × P. nigra genotypes. Ann. For. Sci. 65, 404 (2008). https://doi.org/10.1051/forest:2008016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008016

Navigation