Agronomy for Sustainable Development

, Volume 31, Issue 1, pp 217–231 | Cite as

From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review

Review Article

Abstract

Bacillus thuringiensis, known as Bt, is a spore-forming bacterium that occurs naturally in soil and that produces highly specific insecticidal proteins called Cry proteins. These proteins are stomach poisons that specifically affect insects. Today, Bt preparations are considered as the most effective, specific and environmentally-friendly bioinsecticides; they have been used as biological pesticides in agriculture, forestry and in human health for the elimination of vectors of diseases for more than 60 years and their implementation far exceeds other microbial agents such as fungi, protozoa or viruses. This review on the use of this entomopathogenic bacterium in crop protection is not intended to be a compilation of the results of all the investigations made in this field. Instead, it is an attempt to provide an overview of the major trends and developments of Bt for the control of agricultural insect pests and to describe the main approaches that have been used to improve this natural bioinsecticide. Bt-based insecticides are considered safe for mammals and birds, and are safer for non-target insects than conventional insecticides; they have become the most widely used microbial insecticides. However, Bt products have several limitations, such as a narrow activity spectrum, instability in rain and sunlight, and inefficiency against pest feeding on internal tissues of the plants. The first step towards improving Bt has involved the isolation of new strains with higher and broader insecticidal activity against targeted insect pests and the cloning of cry genes encoding new insecticidal crystal proteins. A second strategy was to increase the persistence of its toxins in the field by encapsulation in recombinant asporogenic Bt strains or other heterologous recombinant microbial hosts; this protected the toxins against UV degradation and had the advantage that the transgenic microorganisms released into the environment were non-viable. Bt has also become a key source of genes for transgenic expression to provide pest resistance in plants and in so-called genetically modified plants. The engineering of plants to express Bt cry genes has been especially helpful against pests that attack parts of the plant that are usually not well protected by conventional insecticide application. The potential effects on human health and the environment of the large-scale use of these Bt crops are also in the scope of this review.

Keywords

Bacillus thuringiensis insecticidal bacteria biological control microbial pesticides Cry proteins transgenic Bt crops insect pest control resistance management history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison J.A. (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil: a review, Can. J. For. Res. 23, 2329–2342.CrossRefGoogle Scholar
  2. Angus T.A. (1954) A bacterial toxin paralyzing silkworm larvae, Nature 173, 545–546.PubMedCrossRefGoogle Scholar
  3. Aoki K., Chigasaki Y. (1915) Mber die Pathogenitat des sog. Bacillus sotto (Ishiwata) bei Seidenraupen, Mitt. Med. Fak. Kais. Univ., Tokyo 13, 419–440.Google Scholar
  4. Aoki K., Chigasaki Y. (1916) Ueber atoxogene Sotto-Bacillen, Bull. Imp. Ser. Exp. Stat. Nakano, Tokyo 1, 141.Google Scholar
  5. Audoin V. (1837) Nouvelles experiences sur la nature de la maladie contagieuse qui attaque les vers à soie, et qu’on désigne sous le nom de Muscardine, C.R. Acad. Sci. Paris 5, 712–717.Google Scholar
  6. Barton K.A., Whiteley H.R., Yang N.S. (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects, Plant Physiol. 85, 1103–1109.PubMedCrossRefGoogle Scholar
  7. Bassi A. (1835) Del mal del segno, calcinaccio o moscardino, malattia che affigge i bachi da seta, e sul modo di liberarne le bigattaje anche le piui infestate, Parte prima: della teoria, Tipografia Orcesi, Lodi.Google Scholar
  8. Bassi A. (1836) Del mal del segno e di altre malattie dei bachi da seta. Parte seconda: Practica, Tipografia Orcesi, Lodi.Google Scholar
  9. Baum J.A. (1998) Transgenic Bacillus thuringiensis, Phytoprotection 79, 127–130.Google Scholar
  10. Berliner E. (1911) Uber die Schlaffsucht der Mehlmottenraupe, Z. Ges. Getreidew. 3, 63–70.Google Scholar
  11. Berliner E. (1915) Uber die Schlaffsucht der Mehlmottenraupe (Ephestia Kuhniella, Zell.) und ihren Erreger Bacillus thuringiensis, n. sp., Z. Angew. Entomol. 2, 29–56.CrossRefGoogle Scholar
  12. Bourguet D. (2004) Resistance to Bacillus thuringiensis toxins in the European corn borer: what chance for Bt maize? Physiol. Entomol. 29, 251–256.CrossRefGoogle Scholar
  13. Choma C.T., Surewicz W.K., Kaplan H. (1991) The toxic moeity of the Bacillus thuringiensis protoxin undergoes a conformational change upon activation, Biochem. Biophys. Res. Commun. 179, 933–938.PubMedCrossRefGoogle Scholar
  14. Chorine V. (1931) Sur l’utilisation des microbes dans la lutte contre la pyrale du mais, Ann. lnst. Pasteur, Paris 46, 326–336.Google Scholar
  15. Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Lereclus D., Baum J., Van Rie J., Dean D.H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 63, 807–813.Google Scholar
  16. de Barjac H., Frachon E. (1990) Classification of Bacillus thuringiensis strains, Entomophaga 35, 233–240.CrossRefGoogle Scholar
  17. de Barjac H., Lemille F. (1970) Presence of Flagellar antigenic subfactors in Serotype 3 of Bacillus thuringiensis, J. Invertebr. Pathol. 15, 139–140.CrossRefGoogle Scholar
  18. d’Herelle F. (1911) Sur une épizootie de nature bactérienne sévissant sur les sauterelles auMexique, C.R. Acad. Sci. Paris, Ser. D 152, 1413–1415.Google Scholar
  19. d’Herelle F. (1912) Sur la propagation, dans la République Argentine, de l’épizootie des sauterelles du Mexique, C.R. Acad. Sci. Paris, Ser. D 154, 623–625.Google Scholar
  20. d’Herelle F. (1914) Le coccobacille des sauterelles, Ann. Inst. Pasteur, Paris 28, 280–328.Google Scholar
  21. Down R.E., Gatehouse A.M.R., Hamilton W.D.O., Gatehouse J.A. (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administred in vitro and via transgenic plants in laboratory and glasshouse trials, J. Insect Physiol. 42, 1035–1045.CrossRefGoogle Scholar
  22. Dulmage H.D. (1970) Insecticidal activity of HD1, a new isolate of Bacillus thuringiensis var. alesti, J. Invertebr. Pathol. 15, 232–239.CrossRefGoogle Scholar
  23. Dulmage H.D. (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control, in: Burges H.D. (Ed.), Microbial Control of Pests and Diseases 1970–1980, Academic Press, London, pp. 193–222.Google Scholar
  24. Ellis R.T., Stockhoff B.A., Stamp L., Schnepf H.E., Schwab G.E., Knuth M., Russell J., Cardineau G.A., Narva K.E. (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte, Appl. Environ. Microbiol. 68, 1137–1145.PubMedCrossRefGoogle Scholar
  25. Ely S. (1993) The engineering of plants to express Bacillus thuringiensis δ-endotoxins, in: Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (Eds.), Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons, Chichester, UK, pp. 105–124.Google Scholar
  26. English L., Slatin S.L. (1990) Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins, Insect. Biochem. Mol. Biol. 22, 1–7.CrossRefGoogle Scholar
  27. Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (1993) Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons, Chichester, UK.Google Scholar
  28. Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. USA 93, 5389–5394.PubMedCrossRefGoogle Scholar
  29. Fischhoff D.A., Bowdish K.S., Perlak F.J., Marrone P.G., McCormick S.H., Neidermeyer J.G., Dean D.A., Kusano-Kretzmer R.T., Mayer E.J., Rochester D.E., Rogers S.G., Fraley R.T. (1987) Insect tolerant tomato plants, Nat. Biotechnol. 5, 807–813.CrossRefGoogle Scholar
  30. Gaertner F.H., Quick T.C., Thompson M.A. (1993) CellCap: an encapsulation system for insecticidal biotoxin proteins, in: Kim L. (Ed.), Advanced engineered pesticides, Marcel Dekker, Inc., New York, pp. 73–83.Google Scholar
  31. Goldberg L.J., Margalit J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens, Mosq. News 37, 355–358.Google Scholar
  32. Gonzales J.M., Dulmage H.T., Carlton B.C. (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis, Plasmid. 5, 351–365.CrossRefGoogle Scholar
  33. Gonzáles J.M.J., Brown B.J., Carlton B.C. (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad. Sci. USA 79, 6951–6955.CrossRefGoogle Scholar
  34. Henle J. (1840) Von den Miasmen und Kontagien, Pathologische Untersuchungen, Berlin.Google Scholar
  35. Hergula B. (1930) On the Mortality of Pyrausta nubilalis Hb, Int. Corn Borer Invest. Sci. Repts. 3, 142–147.Google Scholar
  36. Hilbeck A. (2002) Transgenic host plant resistance and non-target effects, in: Letourneau D.K., Burrows B.E. (Eds.), Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, CRC Press, Boca Raton, Fla., pp. 167–185.Google Scholar
  37. Hilder V.A., Gatehouse A.M.R., Sheerman S.E., Barker R.F., Boulter D. (1987) A novel mechanism of insect resistance engineered into tobacco, Nature 333, 160–163.CrossRefGoogle Scholar
  38. Hofmann C., Vanderbruggen H., Hofte H., Van Rie J., Jansens S., Van Mellaert H. (1988) Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts, Proc. Natl. Acad. Sci. USA 85, 7844–7848.PubMedCrossRefGoogle Scholar
  39. Hofte H., Whiteley H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev. 53, 242–255.PubMedGoogle Scholar
  40. Huang D.-F., Zhang J., Song F.-P., Lang Z.-H. (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China, J. Invertebr. Pathol. 95, 175–180.PubMedCrossRefGoogle Scholar
  41. Husz B. (1930) Field experiments on the application of Bacillus thuringiensis against the corn borer, Int. Corn Borer Invest. Sci. Repts. 3, 91–98.Google Scholar
  42. Ishiwata S. (1901) On a kind of severe flacherie (sotto disease) (No. 1), Dainihon Sanshi Kaiho. 114, 1–5 (original in japanese).Google Scholar
  43. Ishiwata S. (1905) About “sotokin”, a bacillus of a disease of the silkworm, Dainihon Sanshi Kaiho. 160, 1–8 (original in japanese).Google Scholar
  44. Jacobs S.E. (1950) Bacteriological control of the flour moth (Ephestia kuehniella), Proc. Soc. Appl. Bacteriol. 13, 83–91.Google Scholar
  45. James C. (2010) Global status of commercialized transgenic crops, ISAAA Briefs 43 (http://www.isaaa.org).
  46. Johnston K.A., Lee M.J., Brough C., Hilder V.A., Gatehouse A.M.R., Gatehouse J.A. (1995) Protease activities in the larval midgut of Heliotis virescens: Evidence for trypsin and chymotrypsin-like enzymes, Insect. Biochem. Mol. Biol. 25, 375–383.CrossRefGoogle Scholar
  47. Knight P.J., Crickmore N., Ellar D.J. (1994) The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol. Microbiol. 11, 429–436.PubMedCrossRefGoogle Scholar
  48. Knowles B.H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins, Adv. Insect Physiol. 24, 273–308.Google Scholar
  49. Koziel G.M., Beland G.L, Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Maddox D., McPherson K., Heghji M., Merlin E., Rhodes R., Warren G., Wright M., Evola S. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Nat. Biotechnol. 11, 194–200.CrossRefGoogle Scholar
  50. Krassilstschik J.M. (1888) La production industrielle des parasites vegetaux pour la destruction des insectes nuisibles, Bull. Sci. Fr. Belg. 19, 461–472Google Scholar
  51. Krieg A., Huger A.M., Langenbruch G.A., Schnetter W. (1983) Bacillus thuringiensis var. tenebrionis: a new pathotype effective against larvae of Coleoptera, Z. Angew. Entomol. 96, 500–508.CrossRefGoogle Scholar
  52. Lampel J.S., Canter G.L., Dimock M.B., Kelly J.L., Anderson J.J., Uratani B.B., Foulke J.S. Jr., Turner J.T. (1994) Integrative cloning, expression, and stability of the cry1A(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis, Appl. Environ. Microbiol. 60, 501–508.PubMedGoogle Scholar
  53. Lecadet M.-M., Dedonder R. (1967) Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae I. Preparation and fractionation of the lysates, J. Invertebr. Pathol. 9, 310–321.CrossRefGoogle Scholar
  54. Lereclus D., Delécluse A., Lecadet M.-M. (1993) Diversity of Bacillus thuringiensis toxins and genes, in: Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (Eds.), Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons Ltd, Chichester, UK, pp. 37–69.Google Scholar
  55. Liu Y.B., Tabashnik B.E. (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis, Proc. R. Soc. Lond. B 264, 605–610.CrossRefGoogle Scholar
  56. Lorenz M.G., Wackernagel W. (1996) Mechanism and consequences of horizontal gene transfer in natural bacterial populations, in: Tomiuk J., Wöhrmann K., Sentker A. (Eds.), Transgenic organisms: Biological and Social implications, Birkhauser Verlag, Basel, Boston Berlin, pp. 45–57.Google Scholar
  57. Martin P.A., Travers R.S. (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates, Appl. Environ. Microbiol. 55, 2437–2442.PubMedGoogle Scholar
  58. Mattes O. (1927) Parasitare Krankheiten der Mehlmottenlarven und Versuche uber ihre Verwendbarkeit als biologisches Bekiampfungsmittel, Sitzber. Ges. Beforder. Ges. Naturw. Marburg. 62, 381–417.Google Scholar
  59. McBride K.E., Svab Z., Schaaf D.J., Hogan P.S., Stalker D.M., Maliga P. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco, Nat. Biotechnol. 13, 362–365.CrossRefGoogle Scholar
  60. McGaughey W.H. (1985) Insect Resistance to the Biological Insecticide Bacillus thuringiensis, Sci. 229, 193–195.CrossRefGoogle Scholar
  61. Metalnikov S., Chorine V. (1929) On the Infection of the Gypsy Moth and certain other Insects with Bacterium thuringiensis, Int. Corn. Borer Invest. Sci. Repts. 2, 60–61.Google Scholar
  62. Metalnikov S., Hergula B., Strail D.M. (1930) Experiments on the Application of Bacteria against the Corn Borer, Int. Corn. Borer Invest. Sci. Repts. 3, 148–151.Google Scholar
  63. Metchnikoff E. (1879) Diseases of the larvae of the grain weevil, Insects harmful to agriculture (series), Issue III, Published by the commission attached to the Odessa Zemstvo Office.Google Scholar
  64. Nysten P.H. (1808) Recherches sur les maladies des vers à soie et les moyens de les prévenir, Imprimerie Impériale, Paris.Google Scholar
  65. Ohba M., Mizuki E., Uemori A. (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis, Anticancer Res. 29, 427–434.PubMedGoogle Scholar
  66. Pasteur L. (1870) Études sur la maladie des vers à soie. Tomes I and II, Gauthier-Villars, Paris.Google Scholar
  67. Perlak F.J., Fuchs R.L., Dean D.A., McPherson S.L., Fishhoff D.A. (1991)Modification of the coding sequences enhances plant expression of insect control protein genes, Proc. Natl. Acad. Sci. USA 88, 3324–3328.PubMedCrossRefGoogle Scholar
  68. Pigott C., Ellar D.J. (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity, Microbiol. Mol. Biol. Rev. 71, 255–281.PubMedCrossRefGoogle Scholar
  69. Richards A.G., Richards P.A. (1977) The peritrophic membranes of insects. Annu. Rev. Entomol. 22, 219–240.PubMedCrossRefGoogle Scholar
  70. Sanchis V. (2000) Biotechnological improvement of Bacillus thuringiensis for agricultural control of insect pests: benefits and ecological implications, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 441–459.Google Scholar
  71. Sanchis V., Bourguet D. (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review, Agron. Sustain. Dev. 28, 11–20.CrossRefGoogle Scholar
  72. Schnepf H.E., Whiteley H.R. (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli, Proc. Natl. Acad. Sci. USA 78, 2893–2897.PubMedCrossRefGoogle Scholar
  73. Schnepf H.E., Wong H.C., Whiteley H.R. (1985) The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence, J. Biol. Chem. 260, 6264–6272.PubMedGoogle Scholar
  74. Shade R.E., Schroeder H.E., Pueyo J.J., Tabe L.M., Murdock L.L., Higgins T.J.V., Chrispeels M.J. (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles, Nat. Biotechnol. 12, 793–796.CrossRefGoogle Scholar
  75. Smith R.A., Couche G.A. (1991) The phylloplane as a source of Bacillus thuringiensis variants, Appl. Environ. Microbiol. 57, 311–315.PubMedGoogle Scholar
  76. Steinhaus E.A. (1949) Principles of Insect pathology, McGraw-Hill, New-York, USA.Google Scholar
  77. Steinhaus E.A. (1951) Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar, Hilgardia 20, 359–381.Google Scholar
  78. Steinhaus E.A. (1956) Microbial control-the emergence of an idea: A brief history of insect pathology through the nineteenth century, Hilgardia 26, 107–160.Google Scholar
  79. Stotzky G. (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids, J. Environ. Qual. 29, 691–705.CrossRefGoogle Scholar
  80. Tabashnik B.E. (1994) Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 39, 47–79.CrossRefGoogle Scholar
  81. Tabashnik B.E., Dennehy T.J., Carrière Y. (2005) Delayed resistance to transgenic cotton in pink bollworm, Proc. Natl. Acad. Sci. USA 102, 15389–15393.PubMedCrossRefGoogle Scholar
  82. Tabashnik B.E., Gassmann A.J., Crowder D.W., Carrière Y. (2008) Insect resistance to Bt crops: evidence versus theory, Nat. Biotechnol. 26, 199–202.PubMedCrossRefGoogle Scholar
  83. Tanada Y., Kaya H.K. (1993) Insect pathology, Academic Press, Inc, San Diego, California, USA.Google Scholar
  84. Thuriaux P. (1996). Les flux de gènes, in: Kahn A. (Ed.), Les plantes transgéniques en agriculture, John Libbey Eurotext. Montrouge, France, pp. 99–110.Google Scholar
  85. Toumanoff C. (1952) A propos d’un bacille pathogène pour les vers A soie au Japon (Bacillus sotto Ishiwata) et ses affinités avec d’autres bacilles entomophytes. Ann. Inst. Pasteur Paris 82, 512–516.PubMedGoogle Scholar
  86. Toumanoff C., Vago C. (1951) L’agent pathogène de la flacherie des vers a soie endémique dans la région des Cevennes: Bacillus cereus var. alesti var. nov., C.R. Hebd. Seances Acad. Sci. 233, 1504–1506.PubMedGoogle Scholar
  87. Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L.A. Jr. (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem. 270, 5490–5494.PubMedCrossRefGoogle Scholar
  88. Vaeck M., Reynaerts A., Höfte H., Jansens S., De Beukeleer M., Dean C., Zabeau M., Van Montagu M., Leemans J. (1987) Transgenic plants protected from insect attack, Nature 327, 33–37.CrossRefGoogle Scholar
  89. Van Frankenhuyzen K. (2000) Applications of Bacillus thuringiensis in forestry, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers. Dordrecht, The Netherlands, pp. 371–382.Google Scholar
  90. Van Raamsdonk L.W.D., Schouten H.J. (1997) Gene flow and establishment of transgenes in natural plant populations, Acta Botanica Neerlandica 46, 69–84.Google Scholar
  91. Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis deltaendotoxins, Appl. Environ. Microbiol. 56, 1378–1385.PubMedGoogle Scholar
  92. Vouk V. (1930) The fight against the Corn Borer in Jugoslavia, Corn Borer Invest. Sci. Repts. 3, 113–115.Google Scholar
  93. Wei J.-Z., Hale K., Carta L., Platzer E., Wong C., Fang S.-C., Aroian R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes, Proc. Natl. Acad. Sci. USA 100, 2760–2765.PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.INRA, UMR 1319 MicalisDomaine de VilvertJouy-en-JosasFrance

Personalised recommendations