Skip to main content

Advertisement

Log in

From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis, known as Bt, is a spore-forming bacterium that occurs naturally in soil and that produces highly specific insecticidal proteins called Cry proteins. These proteins are stomach poisons that specifically affect insects. Today, Bt preparations are considered as the most effective, specific and environmentally-friendly bioinsecticides; they have been used as biological pesticides in agriculture, forestry and in human health for the elimination of vectors of diseases for more than 60 years and their implementation far exceeds other microbial agents such as fungi, protozoa or viruses. This review on the use of this entomopathogenic bacterium in crop protection is not intended to be a compilation of the results of all the investigations made in this field. Instead, it is an attempt to provide an overview of the major trends and developments of Bt for the control of agricultural insect pests and to describe the main approaches that have been used to improve this natural bioinsecticide. Bt-based insecticides are considered safe for mammals and birds, and are safer for non-target insects than conventional insecticides; they have become the most widely used microbial insecticides. However, Bt products have several limitations, such as a narrow activity spectrum, instability in rain and sunlight, and inefficiency against pest feeding on internal tissues of the plants. The first step towards improving Bt has involved the isolation of new strains with higher and broader insecticidal activity against targeted insect pests and the cloning of cry genes encoding new insecticidal crystal proteins. A second strategy was to increase the persistence of its toxins in the field by encapsulation in recombinant asporogenic Bt strains or other heterologous recombinant microbial hosts; this protected the toxins against UV degradation and had the advantage that the transgenic microorganisms released into the environment were non-viable. Bt has also become a key source of genes for transgenic expression to provide pest resistance in plants and in so-called genetically modified plants. The engineering of plants to express Bt cry genes has been especially helpful against pests that attack parts of the plant that are usually not well protected by conventional insecticide application. The potential effects on human health and the environment of the large-scale use of these Bt crops are also in the scope of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addison J.A. (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil: a review, Can. J. For. Res. 23, 2329–2342.

    Article  Google Scholar 

  • Angus T.A. (1954) A bacterial toxin paralyzing silkworm larvae, Nature 173, 545–546.

    Article  PubMed  CAS  Google Scholar 

  • Aoki K., Chigasaki Y. (1915) Mber die Pathogenitat des sog. Bacillus sotto (Ishiwata) bei Seidenraupen, Mitt. Med. Fak. Kais. Univ., Tokyo 13, 419–440.

    Google Scholar 

  • Aoki K., Chigasaki Y. (1916) Ueber atoxogene Sotto-Bacillen, Bull. Imp. Ser. Exp. Stat. Nakano, Tokyo 1, 141.

    Google Scholar 

  • Audoin V. (1837) Nouvelles experiences sur la nature de la maladie contagieuse qui attaque les vers à soie, et qu’on désigne sous le nom de Muscardine, C.R. Acad. Sci. Paris 5, 712–717.

    Google Scholar 

  • Barton K.A., Whiteley H.R., Yang N.S. (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects, Plant Physiol. 85, 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Bassi A. (1835) Del mal del segno, calcinaccio o moscardino, malattia che affigge i bachi da seta, e sul modo di liberarne le bigattaje anche le piui infestate, Parte prima: della teoria, Tipografia Orcesi, Lodi.

  • Bassi A. (1836) Del mal del segno e di altre malattie dei bachi da seta. Parte seconda: Practica, Tipografia Orcesi, Lodi.

  • Baum J.A. (1998) Transgenic Bacillus thuringiensis, Phytoprotection 79, 127–130.

    Google Scholar 

  • Berliner E. (1911) Uber die Schlaffsucht der Mehlmottenraupe, Z. Ges. Getreidew. 3, 63–70.

    Google Scholar 

  • Berliner E. (1915) Uber die Schlaffsucht der Mehlmottenraupe (Ephestia Kuhniella, Zell.) und ihren Erreger Bacillus thuringiensis, n. sp., Z. Angew. Entomol. 2, 29–56.

    Article  Google Scholar 

  • Bourguet D. (2004) Resistance to Bacillus thuringiensis toxins in the European corn borer: what chance for Bt maize? Physiol. Entomol. 29, 251–256.

    Article  CAS  Google Scholar 

  • Choma C.T., Surewicz W.K., Kaplan H. (1991) The toxic moeity of the Bacillus thuringiensis protoxin undergoes a conformational change upon activation, Biochem. Biophys. Res. Commun. 179, 933–938.

    Article  PubMed  CAS  Google Scholar 

  • Chorine V. (1931) Sur l’utilisation des microbes dans la lutte contre la pyrale du mais, Ann. lnst. Pasteur, Paris 46, 326–336.

    Google Scholar 

  • Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Lereclus D., Baum J., Van Rie J., Dean D.H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 63, 807–813.

    Google Scholar 

  • de Barjac H., Frachon E. (1990) Classification of Bacillus thuringiensis strains, Entomophaga 35, 233–240.

    Article  Google Scholar 

  • de Barjac H., Lemille F. (1970) Presence of Flagellar antigenic subfactors in Serotype 3 of Bacillus thuringiensis, J. Invertebr. Pathol. 15, 139–140.

    Article  Google Scholar 

  • d’Herelle F. (1911) Sur une épizootie de nature bactérienne sévissant sur les sauterelles auMexique, C.R. Acad. Sci. Paris, Ser. D 152, 1413–1415.

    Google Scholar 

  • d’Herelle F. (1912) Sur la propagation, dans la République Argentine, de l’épizootie des sauterelles du Mexique, C.R. Acad. Sci. Paris, Ser. D 154, 623–625.

    Google Scholar 

  • d’Herelle F. (1914) Le coccobacille des sauterelles, Ann. Inst. Pasteur, Paris 28, 280–328.

    Google Scholar 

  • Down R.E., Gatehouse A.M.R., Hamilton W.D.O., Gatehouse J.A. (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administred in vitro and via transgenic plants in laboratory and glasshouse trials, J. Insect Physiol. 42, 1035–1045.

    Article  CAS  Google Scholar 

  • Dulmage H.D. (1970) Insecticidal activity of HD1, a new isolate of Bacillus thuringiensis var. alesti, J. Invertebr. Pathol. 15, 232–239.

    Article  Google Scholar 

  • Dulmage H.D. (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control, in: Burges H.D. (Ed.), Microbial Control of Pests and Diseases 1970–1980, Academic Press, London, pp. 193–222.

    Google Scholar 

  • Ellis R.T., Stockhoff B.A., Stamp L., Schnepf H.E., Schwab G.E., Knuth M., Russell J., Cardineau G.A., Narva K.E. (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte, Appl. Environ. Microbiol. 68, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Ely S. (1993) The engineering of plants to express Bacillus thuringiensis δ-endotoxins, in: Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (Eds.), Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons, Chichester, UK, pp. 105–124.

    Google Scholar 

  • English L., Slatin S.L. (1990) Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins, Insect. Biochem. Mol. Biol. 22, 1–7.

    Article  Google Scholar 

  • Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (1993) Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. USA 93, 5389–5394.

    Article  PubMed  CAS  Google Scholar 

  • Fischhoff D.A., Bowdish K.S., Perlak F.J., Marrone P.G., McCormick S.H., Neidermeyer J.G., Dean D.A., Kusano-Kretzmer R.T., Mayer E.J., Rochester D.E., Rogers S.G., Fraley R.T. (1987) Insect tolerant tomato plants, Nat. Biotechnol. 5, 807–813.

    Article  CAS  Google Scholar 

  • Gaertner F.H., Quick T.C., Thompson M.A. (1993) CellCap: an encapsulation system for insecticidal biotoxin proteins, in: Kim L. (Ed.), Advanced engineered pesticides, Marcel Dekker, Inc., New York, pp. 73–83.

    Google Scholar 

  • Goldberg L.J., Margalit J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens, Mosq. News 37, 355–358.

    Google Scholar 

  • Gonzales J.M., Dulmage H.T., Carlton B.C. (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis, Plasmid. 5, 351–365.

    Article  Google Scholar 

  • Gonzáles J.M.J., Brown B.J., Carlton B.C. (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad. Sci. USA 79, 6951–6955.

    Article  Google Scholar 

  • Henle J. (1840) Von den Miasmen und Kontagien, Pathologische Untersuchungen, Berlin.

  • Hergula B. (1930) On the Mortality of Pyrausta nubilalis Hb, Int. Corn Borer Invest. Sci. Repts. 3, 142–147.

    Google Scholar 

  • Hilbeck A. (2002) Transgenic host plant resistance and non-target effects, in: Letourneau D.K., Burrows B.E. (Eds.), Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, CRC Press, Boca Raton, Fla., pp. 167–185.

    Google Scholar 

  • Hilder V.A., Gatehouse A.M.R., Sheerman S.E., Barker R.F., Boulter D. (1987) A novel mechanism of insect resistance engineered into tobacco, Nature 333, 160–163.

    Article  Google Scholar 

  • Hofmann C., Vanderbruggen H., Hofte H., Van Rie J., Jansens S., Van Mellaert H. (1988) Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts, Proc. Natl. Acad. Sci. USA 85, 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  • Hofte H., Whiteley H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev. 53, 242–255.

    PubMed  CAS  Google Scholar 

  • Huang D.-F., Zhang J., Song F.-P., Lang Z.-H. (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China, J. Invertebr. Pathol. 95, 175–180.

    Article  PubMed  Google Scholar 

  • Husz B. (1930) Field experiments on the application of Bacillus thuringiensis against the corn borer, Int. Corn Borer Invest. Sci. Repts. 3, 91–98.

    Google Scholar 

  • Ishiwata S. (1901) On a kind of severe flacherie (sotto disease) (No. 1), Dainihon Sanshi Kaiho. 114, 1–5 (original in japanese).

    Google Scholar 

  • Ishiwata S. (1905) About “sotokin”, a bacillus of a disease of the silkworm, Dainihon Sanshi Kaiho. 160, 1–8 (original in japanese).

    Google Scholar 

  • Jacobs S.E. (1950) Bacteriological control of the flour moth (Ephestia kuehniella), Proc. Soc. Appl. Bacteriol. 13, 83–91.

    Google Scholar 

  • James C. (2010) Global status of commercialized transgenic crops, ISAAA Briefs 43 (http://www.isaaa.org).

  • Johnston K.A., Lee M.J., Brough C., Hilder V.A., Gatehouse A.M.R., Gatehouse J.A. (1995) Protease activities in the larval midgut of Heliotis virescens: Evidence for trypsin and chymotrypsin-like enzymes, Insect. Biochem. Mol. Biol. 25, 375–383.

    Article  CAS  Google Scholar 

  • Knight P.J., Crickmore N., Ellar D.J. (1994) The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol. Microbiol. 11, 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Knowles B.H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins, Adv. Insect Physiol. 24, 273–308.

    Google Scholar 

  • Koziel G.M., Beland G.L, Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Maddox D., McPherson K., Heghji M., Merlin E., Rhodes R., Warren G., Wright M., Evola S. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Nat. Biotechnol. 11, 194–200.

    Article  CAS  Google Scholar 

  • Krassilstschik J.M. (1888) La production industrielle des parasites vegetaux pour la destruction des insectes nuisibles, Bull. Sci. Fr. Belg. 19, 461–472

    Google Scholar 

  • Krieg A., Huger A.M., Langenbruch G.A., Schnetter W. (1983) Bacillus thuringiensis var. tenebrionis: a new pathotype effective against larvae of Coleoptera, Z. Angew. Entomol. 96, 500–508.

    Article  Google Scholar 

  • Lampel J.S., Canter G.L., Dimock M.B., Kelly J.L., Anderson J.J., Uratani B.B., Foulke J.S. Jr., Turner J.T. (1994) Integrative cloning, expression, and stability of the cry1A(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis, Appl. Environ. Microbiol. 60, 501–508.

    PubMed  CAS  Google Scholar 

  • Lecadet M.-M., Dedonder R. (1967) Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae I. Preparation and fractionation of the lysates, J. Invertebr. Pathol. 9, 310–321.

    Article  CAS  Google Scholar 

  • Lereclus D., Delécluse A., Lecadet M.-M. (1993) Diversity of Bacillus thuringiensis toxins and genes, in: Entwistle P.F., Cory J.S., Bailey M.J., Higgs S. (Eds.), Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, John Wiley & Sons Ltd, Chichester, UK, pp. 37–69.

    Google Scholar 

  • Liu Y.B., Tabashnik B.E. (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis, Proc. R. Soc. Lond. B 264, 605–610.

    Article  Google Scholar 

  • Lorenz M.G., Wackernagel W. (1996) Mechanism and consequences of horizontal gene transfer in natural bacterial populations, in: Tomiuk J., Wöhrmann K., Sentker A. (Eds.), Transgenic organisms: Biological and Social implications, Birkhauser Verlag, Basel, Boston Berlin, pp. 45–57.

    Google Scholar 

  • Martin P.A., Travers R.S. (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates, Appl. Environ. Microbiol. 55, 2437–2442.

    PubMed  CAS  Google Scholar 

  • Mattes O. (1927) Parasitare Krankheiten der Mehlmottenlarven und Versuche uber ihre Verwendbarkeit als biologisches Bekiampfungsmittel, Sitzber. Ges. Beforder. Ges. Naturw. Marburg. 62, 381–417.

    Google Scholar 

  • McBride K.E., Svab Z., Schaaf D.J., Hogan P.S., Stalker D.M., Maliga P. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco, Nat. Biotechnol. 13, 362–365.

    Article  CAS  Google Scholar 

  • McGaughey W.H. (1985) Insect Resistance to the Biological Insecticide Bacillus thuringiensis, Sci. 229, 193–195.

    Article  CAS  Google Scholar 

  • Metalnikov S., Chorine V. (1929) On the Infection of the Gypsy Moth and certain other Insects with Bacterium thuringiensis, Int. Corn. Borer Invest. Sci. Repts. 2, 60–61.

    Google Scholar 

  • Metalnikov S., Hergula B., Strail D.M. (1930) Experiments on the Application of Bacteria against the Corn Borer, Int. Corn. Borer Invest. Sci. Repts. 3, 148–151.

    Google Scholar 

  • Metchnikoff E. (1879) Diseases of the larvae of the grain weevil, Insects harmful to agriculture (series), Issue III, Published by the commission attached to the Odessa Zemstvo Office.

  • Nysten P.H. (1808) Recherches sur les maladies des vers à soie et les moyens de les prévenir, Imprimerie Impériale, Paris.

    Google Scholar 

  • Ohba M., Mizuki E., Uemori A. (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis, Anticancer Res. 29, 427–434.

    PubMed  CAS  Google Scholar 

  • Pasteur L. (1870) Études sur la maladie des vers à soie. Tomes I and II, Gauthier-Villars, Paris.

    Google Scholar 

  • Perlak F.J., Fuchs R.L., Dean D.A., McPherson S.L., Fishhoff D.A. (1991)Modification of the coding sequences enhances plant expression of insect control protein genes, Proc. Natl. Acad. Sci. USA 88, 3324–3328.

    Article  PubMed  CAS  Google Scholar 

  • Pigott C., Ellar D.J. (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity, Microbiol. Mol. Biol. Rev. 71, 255–281.

    Article  PubMed  CAS  Google Scholar 

  • Richards A.G., Richards P.A. (1977) The peritrophic membranes of insects. Annu. Rev. Entomol. 22, 219–240.

    Article  PubMed  Google Scholar 

  • Sanchis V. (2000) Biotechnological improvement of Bacillus thuringiensis for agricultural control of insect pests: benefits and ecological implications, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 441–459.

    Google Scholar 

  • Sanchis V., Bourguet D. (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review, Agron. Sustain. Dev. 28, 11–20.

    Article  Google Scholar 

  • Schnepf H.E., Whiteley H.R. (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli, Proc. Natl. Acad. Sci. USA 78, 2893–2897.

    Article  PubMed  CAS  Google Scholar 

  • Schnepf H.E., Wong H.C., Whiteley H.R. (1985) The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence, J. Biol. Chem. 260, 6264–6272.

    PubMed  CAS  Google Scholar 

  • Shade R.E., Schroeder H.E., Pueyo J.J., Tabe L.M., Murdock L.L., Higgins T.J.V., Chrispeels M.J. (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles, Nat. Biotechnol. 12, 793–796.

    Article  CAS  Google Scholar 

  • Smith R.A., Couche G.A. (1991) The phylloplane as a source of Bacillus thuringiensis variants, Appl. Environ. Microbiol. 57, 311–315.

    PubMed  CAS  Google Scholar 

  • Steinhaus E.A. (1949) Principles of Insect pathology, McGraw-Hill, New-York, USA.

    Google Scholar 

  • Steinhaus E.A. (1951) Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar, Hilgardia 20, 359–381.

    Google Scholar 

  • Steinhaus E.A. (1956) Microbial control-the emergence of an idea: A brief history of insect pathology through the nineteenth century, Hilgardia 26, 107–160.

    Google Scholar 

  • Stotzky G. (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids, J. Environ. Qual. 29, 691–705.

    Article  CAS  Google Scholar 

  • Tabashnik B.E. (1994) Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 39, 47–79.

    Article  Google Scholar 

  • Tabashnik B.E., Dennehy T.J., Carrière Y. (2005) Delayed resistance to transgenic cotton in pink bollworm, Proc. Natl. Acad. Sci. USA 102, 15389–15393.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik B.E., Gassmann A.J., Crowder D.W., Carrière Y. (2008) Insect resistance to Bt crops: evidence versus theory, Nat. Biotechnol. 26, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Tanada Y., Kaya H.K. (1993) Insect pathology, Academic Press, Inc, San Diego, California, USA.

    Google Scholar 

  • Thuriaux P. (1996). Les flux de gènes, in: Kahn A. (Ed.), Les plantes transgéniques en agriculture, John Libbey Eurotext. Montrouge, France, pp. 99–110.

    Google Scholar 

  • Toumanoff C. (1952) A propos d’un bacille pathogène pour les vers A soie au Japon (Bacillus sotto Ishiwata) et ses affinités avec d’autres bacilles entomophytes. Ann. Inst. Pasteur Paris 82, 512–516.

    PubMed  CAS  Google Scholar 

  • Toumanoff C., Vago C. (1951) L’agent pathogène de la flacherie des vers a soie endémique dans la région des Cevennes: Bacillus cereus var. alesti var. nov., C.R. Hebd. Seances Acad. Sci. 233, 1504–1506.

    PubMed  CAS  Google Scholar 

  • Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L.A. Jr. (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem. 270, 5490–5494.

    Article  PubMed  CAS  Google Scholar 

  • Vaeck M., Reynaerts A., Höfte H., Jansens S., De Beukeleer M., Dean C., Zabeau M., Van Montagu M., Leemans J. (1987) Transgenic plants protected from insect attack, Nature 327, 33–37.

    Article  Google Scholar 

  • Van Frankenhuyzen K. (2000) Applications of Bacillus thuringiensis in forestry, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers. Dordrecht, The Netherlands, pp. 371–382.

    Google Scholar 

  • Van Raamsdonk L.W.D., Schouten H.J. (1997) Gene flow and establishment of transgenes in natural plant populations, Acta Botanica Neerlandica 46, 69–84.

    Google Scholar 

  • Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis deltaendotoxins, Appl. Environ. Microbiol. 56, 1378–1385.

    PubMed  Google Scholar 

  • Vouk V. (1930) The fight against the Corn Borer in Jugoslavia, Corn Borer Invest. Sci. Repts. 3, 113–115.

    Google Scholar 

  • Wei J.-Z., Hale K., Carta L., Platzer E., Wong C., Fang S.-C., Aroian R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes, Proc. Natl. Acad. Sci. USA 100, 2760–2765.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Sanchis.

About this article

Cite this article

Sanchis, V. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy Sust. Developm. 31, 217–231 (2011). https://doi.org/10.1051/agro/2010027

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2010027

Keywords

Navigation