Agronomy for Sustainable Development

, Volume 31, Issue 1, pp 173–190 | Cite as

Soybean interactions with soil microbes, agronomical and molecular aspects

  • D. N. Rodríguez-Navarro
  • I. Margaret Oliver
  • M. Albareda Contreras
  • J. E. Ruiz-Sainz
Review Article


Soybean, Glycine max (L.) Merrill, is one of the most important food crops in the world. High soybean yields require large amounts of N fertilizers, which are expensive and can cause environmental problems. The industrial fixation of nitrogen accounts for about 50% of fossil fuel usage in agriculture. In contrast, biological fixation of N2 is a low-cost source of N for soybean cropping through the symbiotic association between the plant and soil bacteria belonging to the genera Bradyrhizobium and Sinorhizobium, which are collectively called “soybean rhizobia“. In general, symbiotic nitrogen fixation in crop legumes not only reduces fertilizer costs but also improves soil fertility through crop rotation and intercropping. Biological nitrogen fixation is due to symbioses between leguminous plants and species of Rhizobium bacteria. Replacing this natural N source by synthetic N fertilizers would cost around 10 billion dollars annually. Moreover, legume seed and foliage have a higher protein content than that of non-legumes, and this makes them desirable protein crops. There is a wide knowledge of the industrial elaboration and use of commercial soybean inoculants based on bradyrhizobia strains. At present, the technology to prepare different types of inoculants, either solid or liquid, is sufficiently developed to meet market requirements, although further research and investments are still required to improve the symbiotic efficacy of rhizobial inoculants. Inoculation of soybeans under field conditions has been successful in the USA, Brazil and Argentina, which are the world leaders in soybean cultivation in terms of acreage and grain yields. There are, however, limitations to a wider use of rhizobial inoculants: the size of indigenous soil rhizobial populations can prevent the successful use of inoculants in some particular areas. For example, many Chinese soils contain more than 105 soybean rhizobia per gram of soil, which imposes a serious barrier for nodule occupancy by the soybean rhizobia used as an inoculant. The use of inoculants based on soil bacteria other than rhizobia has also increased in the last decades. An example is the genus Azospirillum, which can be used for its capacity to increase plant growth and seed yields through different mechanisms, such as the production of plant hormones and the increase in phosphate uptake by roots. In addition, co-inoculation with Azospirillum and rhizobia enhances nodulation and nitrogen fixation. Although less developed, it is expected that inoculants based on mycorrhizal fungi will also play a relevant role in sustainable agriculture and forestry. In spite of any possible limitations, the use of inoculants appears compulsory in a frame of sustainable agriculture, which seeks to increase crop yields and nutrient-use efficiency while reducing the environmental costs associated with agriculture intensification. This review also summarizes some of the most relevant genetic aspects of soybean rhizobia in relation to their symbiosis with soybeans. They can be listed as follows: (1) legume roots exude flavonoids, which are able to activate the transcription of nodulation (nod, nol, noe) genes; (2) expression of nodulation genes results in the production and secretion of lipo-chitin oligosaccharide signal molecules, called LCOs or “Nod factors”, which activate nodule organogenesis in the legume root; (3) LCOs induce numerous responses of the legume roots, such as hair curling and the formation of nodule primordia in the inner or outer cortex; (4) the function of many soybean rhizobia nod genes is known and the chemical structure of the LCOs produced has been determined; (5) in addition to LCOs, different soybean rhizobia surface polysaccharides are required for the formation of nitrogenfixing nodules; (6) surface polysaccharides might act as signal molecules or could prevent plant defense reactions. Cyclic glucans, capsular polysaccharides and lipopolysaccharides appear to play relevant roles in the soybean nodulation process since rhizobial mutants affected in any of these surface polysaccharides are symbiotically impaired. Present knowledge of the molecular bases determining cultivar-strain specificity and nodule occupancy by soybean rhizobia competitors is clearly insufficient. This lack of information is a serious barrier for developing strategies aimed at improving nodulation and symbiotic nitrogen fixation of commercial inoculants. In spite of these difficulties, recent studies have shown that the signaling pathway involved in triggering nodule organogenesis is independent of that operating in bacterial entry through infection thread formation. Theses facts might offer new insights for improving symbiotic nitrogen fixation and also for the feasibility of transferring nodule organogenesis, a first step in expanding this symbiotic interaction into other agriculturally important species.


soybean legume inoculants Bradyrhizobium japonicum Sinorhizobium fredii nodulation factors rhizobial surface polysaccharides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albareda M., Rodríguez-Navarro D.N., Camacho M., Temprano F.J. (2009a) Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations, Soil Biol. Biochem. 40, 2771–2779.CrossRefGoogle Scholar
  2. Albareda M., Rodríguez-Navarro D.N., Temprano F.J. (2009b) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain, Eur. J. Agron. 30, 205–211.CrossRefGoogle Scholar
  3. Bago A., Cano C., Toussaint J.P., Smith S., Dickson S. (2006) Interactions between the arbuscular Mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures, Mycorrhiza 16, 429–436.PubMedCrossRefGoogle Scholar
  4. Bai Y., D’Aoust F., Smith D.L., Driscoll B.T. (2002) Isolation of plantgrowth-promoting Bacillus strains from soybean root nodules, Can. J. Microbiol. 48, 230–238.PubMedCrossRefGoogle Scholar
  5. Bashan Y. (1998) Inoculants of plant growth-promoting bacteria for use in agriculture, Biotechnol. Adv. 16, 729–770.CrossRefGoogle Scholar
  6. Bashan Y., Hernández J.P., Leyva L.A., Bacilio M. (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria, Biol. Fertil. Soils 35, 359–368.CrossRefGoogle Scholar
  7. Bec-Ferté M.P., Krishnan H.B., Promé D., Savagnac A., Pueppke S.G., Promé J.C. (1994) Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257, Biochemistry 33, 11782–11788.PubMedCrossRefGoogle Scholar
  8. Becker A., Fraysse N., Sharypova L. (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides, Mol. Plant-Microb. Interact. 18, 899–905.CrossRefGoogle Scholar
  9. Becker A., Pühler A. (1998) Production of Exopolysaccharides, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 97–118.Google Scholar
  10. Bhagwat A.A., Keister D.L. (1995) Site directed mutagenesis of the β(1 > 3), (1 > 6)-D-glucan synthesis locus of Bradyrhizobium japonicum, Mol. Plant-Microb. Interact. 8, 366–370.CrossRefGoogle Scholar
  11. Breedveld M.V., Miller K.J. (1998) Cell-surface β-glucans, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 81–96.Google Scholar
  12. Buendía-Clavería A.M., Ruiz-Sainz J.E. (1985) Isolation of mutants of fast-growing soybean strains that are effective on commercial soybean cultivars, Physiol. Plant. 64, 507–512.CrossRefGoogle Scholar
  13. Buendía-Clavería A.M., Chamber M.M., Ruiz-Sainz J.E. (1989) A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium fredii strains, Syst. Appl. Microbiol. 12, 203–209.Google Scholar
  14. Camacho M., Santamaría C., Temprano F., Rodríguez-Navarro D.N., Daza A., Espuny R., Bellogin R., Ollero F.J., Lyra M.C.C.P., Buendía-Clavería A., Zhou J., Li F.D., Mateos C., Velazquez E., Vinaldell J.M., Ruiz-Sainz J.E. (2002) Soils of the Chinese Hubei province show a very high diversity of Sinorhizobium fredii strains, Syst. Appl. Microbiol. 25, 592–602.PubMedCrossRefGoogle Scholar
  15. Campo R.J., Silva Araujo R., Hungria M. (2009) Molybdenum-enriched soybean seeds enhance N accumulation, seed yield, and seed protein content in Brazil, Field Crops Res. 110, 219–224.CrossRefGoogle Scholar
  16. Carlson R.W., Sanjuan J., Bhat U.R., Glushka J., Spaink H.P., Stacey G. (1993) The structures and biological activities of the lipooligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum, J. Biol. Chem. 268, 18372–18381.PubMedGoogle Scholar
  17. Cattelan A.J., Hartel P.G., Fuhrmann J.J. (1999) Screening for Plant Growth-Promoting Rhizobacteria to promote early soybean growth, Soil Sci. Soc. Am. J. 63, 1670–1680.CrossRefGoogle Scholar
  18. Chao W.L., Alexander M. (1984) Mineral soils as carriers for Rhizobium inoculants, Appl. Environ. Microbiol. 47, 94–97.PubMedGoogle Scholar
  19. Chen W., Wang E., Wang S., Li Y., Chen X., Li, Y. (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slow growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China, Int. J. Syst. Bacteriol. 38, 392–397.CrossRefGoogle Scholar
  20. Chen W.X., Yang G.H., Li J.L. (1988) Numerical taxonomy study of fastgrowing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov., Int. J. Syst. Bacteriol. 38, 392–397.CrossRefGoogle Scholar
  21. Crespo-Rivas J.C., Margaret I., Hidalgo A., Buendía-Clavería A.M., Ollero F.J., López-Baena F.J., Murdoch P.S., Rodríguez-Carvajal M.A., Soria-Díaz M.E., Reguera M., Lloret J., Sumpton D.P., Mosely J.A., Thomas-Oates J.E., van Brussel A.A.N., Gil-Serrano A., Vinardell J.M., Ruiz-Sainz J.E. (2009) Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS, Mol. Plant-Microb. Interact. 22, 575–588.CrossRefGoogle Scholar
  22. D’Arcy-Lameta A. (1986) Study of soybean and lentil root exudates. II. Identification of some polyphenolic compounds, relation with plantlet physiology, Plant Soil 92, 113–123.CrossRefGoogle Scholar
  23. Dashti N., Zhang F., Hynes R., Smith D.L. (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.)Merr.] under short season conditions, Plant Soil 200, 205–213.CrossRefGoogle Scholar
  24. Date R.A. (2000) Inoculated legumes in cropping systems of the tropics, Field Crops Res. 65, 123–136.CrossRefGoogle Scholar
  25. Daza A., Santamaría C., Rodríguez-Navarro D.N., Camacho M., Orive R., Temprano F. (2000) Perlite as a carrier for bacterial inoculants, Soil Biol. Biochem. 32, 567–572.CrossRefGoogle Scholar
  26. De Castro C., Molinaro A., Lanceta R., Silito A., Parrilla M. (2008) Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species, Carbohydr. Res. 343, 1924–1933.PubMedCrossRefGoogle Scholar
  27. D’Haeze W., Holsters M. (2002) Nod factor structures, responses, and perception during initiation of nodule development, Glycobiology 12, 79–105.CrossRefGoogle Scholar
  28. de Lajudie P., Willems A., Pot B., Dewettnick D., Maestrojuan G., Neyra M., Collins M.D., Dreyfus B., Kersters K., Gillis M. (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli, sp. nov., and Sinorhizobium teranga sp. nov., Int. J. Syst. Bacteriol. 44, 715–733.CrossRefGoogle Scholar
  29. Denardin N.D., Freire J.R.J. (2000) Assessment of polymers for the formulation of legume inoculants, World J. Microbiol. Technol. 16, 215–217.CrossRefGoogle Scholar
  30. Dobbelaere S., Vanderleyden J., Okon Y. (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere, Crit. Rev. Plant Sci. 22, 107–149.CrossRefGoogle Scholar
  31. Dommergues Y.R., Diem H.G., Divies C. (1979) Polyacrylamideentrapped Rhizobium as an inoculant for legumes, Appl. Environ. Microbiol. 37, 779–781.PubMedGoogle Scholar
  32. Dowdle S.F., Bohlool B.B. (1985) Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China, Appl. Environ. Microbiol. 33, 990–995.Google Scholar
  33. Downie J.A. (1998) Functions of rhizobial nodulation genes, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 387–402.Google Scholar
  34. Dylan T., Nagpal P., Helinski D.R., Ditta G.S. (1990) Symbiotic pseudorevertants of Rhizobium ndv mutants, J. Bacteriol. 172, 1409–1417.PubMedGoogle Scholar
  35. Estaún V., Camprubí A., Calvet C., Pinochet J. (2003) Nursery and field response of olive trees inoculated with two arbuscular Mycorrhizal fungi, Glomus intraradices and Glomus mosseae, J. Am. Soc. Hort. Sci. 128, 767–775.Google Scholar
  36. Ferreira E.M., Castro I.V. (2005) Residues of the cork industry as carriers for the production of legumes inoculants, Silva Lusitana 13, 159–167.Google Scholar
  37. Fisher R.F., Long S.R. (1992) Rhizobium-plant signal exchange, Nature 357, 655–660.PubMedCrossRefGoogle Scholar
  38. Forsberg L.S., Carlson R.W. (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides, J. Biol. Chem. 273, 2747–2757.PubMedCrossRefGoogle Scholar
  39. Fraysse N., Couderc F., Poinsot V. (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis, Eur. J. Biochem. 270, 1365–1380.PubMedCrossRefGoogle Scholar
  40. Fuhrmann J., Wollum II A.G. (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability, Biol. Fertil. Soils 7, 108–112.CrossRefGoogle Scholar
  41. Gage D.J. (2004) Infection and invasion of roots by symbiotic, nitrogenfixing rhizobia during nodulation of temperate legumes, Mol. Biol. Rev. 68, 280–300.CrossRefGoogle Scholar
  42. Gil-Serrano A.M., Franco-Rodríguez G., Tejero-Mateo P., Thomas-Oates J., Spaink H.P., Ruiz-Sainz J.E., Megías M., Lamrabet Y. (1997) Structural determination of the lipo-chitin oligossacharide nodulation signals produced by Rhizobium fredii HH103, Carbohydr. Res. 303, 435–443.PubMedCrossRefGoogle Scholar
  43. Gil-Serrano A.M., Rodríguez-Carvajal M.A., Tejero-Mateo P., Espartero J.L., Menendez M., Corzo J., Ruiz-Sainz J.E., Buendía-Clavería A.M. (1999) Structural determination of a 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-glycero-L-mannononulosonic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103, Biochem. J. 342, 527–535.PubMedCrossRefGoogle Scholar
  44. Graham-Weiss L., Bennett M.L., Paau A.S. (1987) Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite, Appl. Environ. Microbiol. 53, 2138–2140.PubMedGoogle Scholar
  45. Hernández B.S., Focht D.D. (1984) Invalidity of the concept of slow growth and alkali production in cowpea rhizobia, Appl. Environ. Microbiol. 48, 206–210.PubMedGoogle Scholar
  46. Herridge D., Gemell G., Hartley E. (2002) Legume inoculants and quality control, in: Herridge D. (Ed.), Inoculants and Nitrogen Fixation in Vietnam, ACIAR Proceedings 109e, Canberra, Australia, pp. 105–115.Google Scholar
  47. Hume D.J., Blair D.H. (1992) Effects of numbers on Bradyrhizobium japonicum applied in commercial inoculants on soybean yield in Ontario, Can. J. Microbiol. 38, 588–593.CrossRefGoogle Scholar
  48. Hungria M., Vargas M.A.T. (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil, Field Crops Res. 65, 151–164.CrossRefGoogle Scholar
  49. Hymowitz T., Shurtleff W.R. (2005) Debunking Soybean Myths and Legends in the Historical and Popular Literature, Crop Sci. 45, 473–476.CrossRefGoogle Scholar
  50. Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C. (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model, Nature 5, 619–633.Google Scholar
  51. Jordan D.C. (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants, Int. J. Syst. Bacteriol. 32, 136–139.CrossRefGoogle Scholar
  52. Kannenberg E.L., Reuhs B.L., Forsberg LS, Carlson R.W. (1998) Lipopolysaccharides and K-antigens: their structures, biosynthesis and functions, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plantassociated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 119–154.Google Scholar
  53. Kereszt A., Kiss E., Reuhs B., Carlson R.W., Kondorosi A., Putnoky P. (1998) Novel rkp genes clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and the invasion of the symbiotic nodule: rkpK gene encodes for a UDP-glucose dehydrogenase, J. Bacteriol. 180, 5426–5431.PubMedGoogle Scholar
  54. Keyser H.H., Bohlool B.B., Hu T.S., Weber D.F. (1982) Fast-growing rhizobia isolated from root nodules of soybean, Science 215, 1631–1632.PubMedCrossRefGoogle Scholar
  55. Kiss E., Kereszt A., Barta F., Stephens S., Reuhs B.L., Kondorosi A., Putnoky P. (2001) The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure, Mol. Plant-Microb. Interact. 14, 1395–1403.CrossRefGoogle Scholar
  56. Kosslak R.M., Brookland R., Barkei J., Paaren H.E., Appelbaum E.R. (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max, Proc. Natl. Acad. Sci. USA 84, 7428–7432.PubMedCrossRefGoogle Scholar
  57. Kuklinsky-Sobral J., Araújo W.L., Mendes R., Geraldi I.O., Pizzirani-Kleiner A.A., Azevedo, J.L. (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion, Environ. Microbiol. 6, 1244–1251.PubMedCrossRefGoogle Scholar
  58. Kuykendall L.D., Saxena B., Devine T.E., Udell S.E. (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov., Can. J. Microbiol. 38, 501–505.CrossRefGoogle Scholar
  59. Li D.-M., Alexander M. (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia, Plant Soil 108, 211–219.CrossRefGoogle Scholar
  60. Lupyawi N.Z., Olsen P.E., Sande E.S., Keyser H.H., Collins M.M., Singleton P.W., Rice W.A. (2000) Inoculant quality and its evaluation, Field Crops Res. 65, 259–270.CrossRefGoogle Scholar
  61. Masson-Boivin C., Giraud E., Perret X., Batut J. (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 17, 458–466.PubMedCrossRefGoogle Scholar
  62. Mathis R., van Gijsegem F., de Ryche R., D’Haeze W., van Maelsaeke E., Antonio E., van Montagu M., Holsters M., Vereecke D. (2005) Lipopolysaccharides as a communication signal for progression of legume endosymbionts, Proc. Nat. Acad. Sci. USA 102, 2655–2660.PubMedCrossRefGoogle Scholar
  63. Obaton M., Bouniols A., Piva G., Vadez V. (2002) Are Bradyrhizobium japonicum stable during a long stay in soil? Plant Soil 245, 315–326.CrossRefGoogle Scholar
  64. O’Hara G., Yates R., Howieson J. (2002) Selection strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments, in: Herridge D. (Ed.), Inoculants and Nitrogen Fixation of Legumes in Vietnam, ACIAR Proceedings 109e, Canberra, Australia, pp. 75–80.Google Scholar
  65. Okon Y., Labandera-Gonzalez C.A. (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation, Soil Biol. Biochem. 26, 1591–1601.CrossRefGoogle Scholar
  66. Parada M., Vinardell J.M., Ollero F.J., Hidalgo A., Gutiérrez R., Buendía-Claveria A.M., Lei W., Margaret I., Lopez-Baena F.J., Gil-Serrano A.M., Rodriguez-Carvajal M.A., Moreno J., Ruiz-Sainz J.E. (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide KPS are impaired for nodulation with soybean and Cajanus cajan, Mol. Plant-Microb. Interact. 19, 43–52.CrossRefGoogle Scholar
  67. Pellock B.J., Cheng H.P., Walker G.C. (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides, J. Bacteriol. 182, 4310–4318.PubMedCrossRefGoogle Scholar
  68. Petrovics G., Putnoky P., Reuhs B., Kim J., Thorp T.A., Noel K.D., Carlson R.W., Kondorosi A. (1993) The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development, Mol. Microbiol. 8, 1083–1094.PubMedCrossRefGoogle Scholar
  69. Pueppke S.G., Broughton W.J. (1999) Rhizobium sp. NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges, Mol. Plant-Microb. Interact. 12, 293–318.CrossRefGoogle Scholar
  70. Puvanesarajah V., Schell F.M., Gerhold D., Stacey G. (1987) Cell surface polysaccharides from Bradyrhizobium japonicum and a nonnodulating mutant, J. Bacteriol. 169, 137–141.PubMedGoogle Scholar
  71. Rebah F.B., Tyagi R.D., Prévost D. (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti, Bioresource Technol. 83, 145–151.CrossRefGoogle Scholar
  72. Reuhs B.L., Carlson R.W., Kim J.S. (1993) Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acidcontaining polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli, J. Bacteriol. 175, 3570–3580.PubMedGoogle Scholar
  73. Reuhs B.L., Geller D.P., Kim J.S., Fox J.E., Kolli V.S.K., Pueppke S.G. (1998) Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens, Appl. Environ. Microbiol. 64, 4930–4938.PubMedGoogle Scholar
  74. Rigano L.A., Payette C., Brouillard G., Marano M.-R., Abramowicz L., Torres P.S., Yun M., Castagno A.P., El Oirdi M., Dufour V., Malamud F., Dow J.M., Bouarab K., Volnov A.A. (2007) Bacterial cyclic β-(1, 2)-glucan acts in systemic suppression of plant immune responses, Plant Cell 19, 2077–2089.PubMedCrossRefGoogle Scholar
  75. Rodríguez-Carvajal M.A., Rodrigues J., Soria-Díaz M.E., Tejero-Matero P., Buendía-Clavería A., Gutiérrez R., Ruiz-Sainz J.E., Thomas-Oates J., Gil-Serrano A.M. (2005) Structural analysis of the capsular polysaccharide from Sinorhizobium fredii HWG35, Biomacromolecules 6, 1448–1456.PubMedCrossRefGoogle Scholar
  76. Rodríguez-Carvajal M.A., Tejero-Mateo P., Espartero J.L., Ruiz-Sainz J.E., Buendía-Clavería A.M., Ollero F.J., Yang S.S., Gil-Serrano A.M. (2001) Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya-beannodulating bacterium isolated from an arid region of China, Biochem. J. 357, 505–511.PubMedCrossRefGoogle Scholar
  77. Rodríguez-Navarro D.N., Bellogín R., Camacho M., Daza A., Medina C., Ollero F.J., Santamaría C., Ruiz-Sainz J.E., Vinardell J.M., Temprano F.J. (2003) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants, Eur. J. Agron. 19, 301–311.CrossRefGoogle Scholar
  78. Rodríguez-Navarro D.N., Ruiz-Sainz J.E., Buendía-Clavería A.M., Santamaría C., Balatti P.A., Krishnan H.B. Pueppke S.G. (1996) Characterization of fast-growing rhizobia from nodulated soybean [Glycine max (L.) Merr.] in Vietnam, Syst. Appl. Microbiol. 19, 240–248.Google Scholar
  79. Sanginga N., Thottappilly G., Dashiell K. (2000) Effectiveness of rhizobia nodulating recent promiscuous soybean selections in the moist savannah of Nigeria, Soil Biol. Biochem. 32, 127–133.CrossRefGoogle Scholar
  80. Sanjuan J., Carlson R.W., Spaink H.P., Bhat U.R., Barbour W.M., Glushka J., Stacey G. (1992) A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum, Proc. Natl. Acad. Sci. USA 89, 8789–8793.PubMedCrossRefGoogle Scholar
  81. Sawada H., Kuykendall L.D., Young J.M. (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts, J. Gen. Appl. Microbiol. 49, 155–179.PubMedCrossRefGoogle Scholar
  82. Schlaman H.R.M., Phillips D.A., Kondorosi E. (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plantassociated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 361–385.Google Scholar
  83. Singleton P., Keyser H., Sande E. (2002) Development and evaluation of liquid inoculants, in: Herridge D. (Ed.), Inoculants and Nitrogen Fixation of Legumes in Vietnam, ACIAR Proceedings 109e, Canberra, Australia, pp. 52–66.Google Scholar
  84. Soriano M.L., Azcón R., Barea J.M., Porras Sporiano A., Marcilla I., Porras Piedra A. (2006) Reduction of the juvenile period of new olive plantations through the early application of mycorrhizal fungi, Soil Sci. 171, 52–58.CrossRefGoogle Scholar
  85. Stephens J.H.G., Rask H.M. (2000) Inoculant production and formulation, Field Crop Res. 65, 249–258.CrossRefGoogle Scholar
  86. Stokkermans T.J.W., Orlando R., Kolli V.S.K. Carlson R.W., Peters N.K. (1996) Biological activities and structures of Bradyrhizobium elkanii low abundance lipo chitin-oligosaccharides, Mol. Plant-Microb. Interact. 9, 298–304.CrossRefGoogle Scholar
  87. Thies J.E., Singleton P.W., Bohlool B.B. (1991a) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes, Appl. Environ. Microbiol. 57, 19–28.PubMedGoogle Scholar
  88. Thies J.E., Singleton P.W., Bohlool B.B. (1991b) Modelling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil, Appl. Environ. Microbiol. 57, 29–37.PubMedGoogle Scholar
  89. Thomas-Oates J., Bereszczak J., Edwards E., Gill A., Noreen S., Zhou J.C., Chen M.Z., Miao L.H., Xie F.L., Yang J.K., Zhou Q., Yang S.S., Li X.H., Wang L., Spaink H.P., Schlaman H.R.M., Harteveld M., Díaz C.L., van Brussel A.A.N., Camacho M., Rodríguez-Navarro D.N., Santamaría C., Temprano F., Acebes J.M., Bellogín R.A., Buendía-Clavería A.M., Cubo M.T., Espuny M.R., Gil A.M., Gutiérrez R., Hidalgo A., López-Baena F.J., Madinabeita N., Medina C., Ollero F.J., Vinardell J.M., Ruiz-Sainz J.E. (2003) A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China, Syst. Appl. Microbiol. 26, 453–465.PubMedCrossRefGoogle Scholar
  90. Thompson J.A. (1980) Production and quality control of legume inoculants, in: Bergersen F.J. (Ed.), Methods for Evaluating Biological Nitrogen Fixation, Wiley, New York, pp. 489–533.Google Scholar
  91. Tittabutr P., Payakapong W., Teaumroong N., Singleton P.W., Boonkerd N. (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives, Science Asia 33, 69–77.CrossRefGoogle Scholar
  92. van Berkum P., Eardly B.D. (1998) Molecular evolutionary systematics of the Rhizobiaceae, in: Spaink H.P., Kondorosi A., Hooykaas P.J.J. (Eds.), The Rhizobiaceae: Molecular Biology of Model Plantassociated Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 2–24.Google Scholar
  93. Videira L.B., Pastor M.D., Lorda G., Iriarte L., Balatti P.A. (2002) Sinorhizobium fredii cultured in media supplemented with Amaranthus cruentus L. seed meal and bacterial cell survival in liquid and peat based inoculum, World J. Microbiol. Biotechnol. 18, 193–199.CrossRefGoogle Scholar
  94. Videira L.B., Pastorino G N., Balatti P.A. (2001) Incompatibility may not be the rule in the Sinorhizobium fredii-soybean interaction, Soil Biol. Biochem. 33, 837–840.CrossRefGoogle Scholar
  95. Zahran H.H. (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate, Microbiol. Mol. Biol. Rev. 63, 968–989.PubMedGoogle Scholar
  96. Zhang F., Dashti N., Hynes R.K., Smith, D.L. (1997) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperature, Ann. Bot. 79, 243–249.CrossRefGoogle Scholar
  97. Xu L.M., Ge C., Cui Z., Li J., Fan H. (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans, Int. J. Syst. Bacteriol. 45, 706–711.PubMedCrossRefGoogle Scholar
  98. Yang S.S., Bellogin R., Buendía-Clavería A.M., Camacho M., Chen M., Cubo T., Daza A., Diaz C.L., Espuny M.R., Gutierrez R., Harteveld M., Li X.H., Lyra M.C.C.P., Madinabeitia N., Medina C., Miao L., Ollero F.J., Olsthoorn M.M.A., Rodriguez D.N., Santamaria C., Schlaman H.P. Spaink H.P., Temprano F., Thomas-Oates J.E., van Brussel A.A.N., Vinardell J.M., Xie F., Yang J., Zhang H.Y., Zhen J., Zhou J., Ruiz-Sainz J.E. (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations, J. Biotechnol. 91, 243–255.PubMedCrossRefGoogle Scholar
  99. Young C.C., Chang J.Y., Chao C.C. (1988) Physiological and symbiotic characteristics of Rhizobium fredii isolated from subtropicaltropical soils, Biol. Fertil. Soils 5, 350–354.CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • D. N. Rodríguez-Navarro
    • 1
  • I. Margaret Oliver
    • 2
  • M. Albareda Contreras
    • 1
  • J. E. Ruiz-Sainz
    • 2
  1. 1.IFAPA, Centro Las Torres-TomejilApartado OficialSevilleSpain
  2. 2.Department of Microbiology, Faculty of BiologyUniversity of SevilleSevilleSpain

Personalised recommendations