, Volume 513, Issue 1–3, pp 129–139 | Cite as

Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain of the Sacramento River, CA, U.S.A.

  • Laurence Edward Schemel
  • Ted R. Sommer
  • Anke B. Müller-Solger
  • William C. Harrell


The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 μg l−1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.

dissolved inorganic nutrients floodplain hydrology phytoplankton biomass Sacramento River 


  1. Anderson, S.W., G. L. Rockwell, J. R. Smithson, M. F. Friebel &M. D. Webster, 2001. Water Resources Data for California, Water Year 2000. U.S. Geological Survey Water-Data Report CA-00-4.Google Scholar
  2. Araujo-Lima, C. A., B. R. Forsberg, R. Victoria & L. Martinelli, 1986. Energy sources for detritivorous fishes in the Amazon. Science 234: 1256–1258.Google Scholar
  3. Bayley, P. B., 1989. Aquatic environments in the Amazon Basin, with an analysis of carbon sources, fish production, and yield. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 399–408.Google Scholar
  4. Bayley, P. B., 1991. The Flood Pulse advantage and the restoration of river-floodplain systems. Regul. Riv.: Res. Manage. 6: 75–86.Google Scholar
  5. Bayley, P. B., 1995. Understanding large river-floodplain ecosystems. BioScience 45: 153–158.Google Scholar
  6. Bennett, W. A. & P. B. Moyle, 1996. Where have all of the fishes gone? Interactive factors producing fish declines in the Sacramento-San Joaquin estuary. In Hollibaugh, J. T. (ed.), San Francisco Bay: The Ecosystem. Pacific Division, American Association for the Advancement of Science, San Francisco, CA: 519–542.Google Scholar
  7. CALFED, 2000. Programmatic Record of Decision. The CALFED Bay Delta Ecosystem Restoration Program, Sacramento, CA. http://www.calfed.water.ca.gov/Archives/ California Department of Water Resources, 1964. Colusa Basin Investigation. Bulletin No. 109. Sacramento, CA.Google Scholar
  8. California Department of Water Resources, 1996. Water quality conditions in the Sacramento-San Joaquin Delta, 1970-1993. Environmental Services Office, Sacramento, CA.Google Scholar
  9. Carignan, R. & J. J. Neiff, 1992. Nutrient dynamics in the floodplain ponds of the Parana River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17: 85–121.Google Scholar
  10. Castillo, M. M., 2000. Influence of hydrological seasonality on bacterioplankton in two neotropical floodplain lakes. Hydrobiologia 437: 57–69.Google Scholar
  11. Cayan, D. R. & D. H. Peterson, 1989. The influence of North Pacific atmospheric circulation on streamflow in the west. In Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas. American Geophysical Union Geophysical Monograph No. 55: 375-397.Google Scholar
  12. Cayan, D. R., K. T. Redmond & L. G. Riddle, 1999. ENSO and hydrologic extremes in the western United States. J. Climate 12: 2881–2893.Google Scholar
  13. Conomos, T. J., R. E. Smith & J. W. Gartner, 1985. Environmental setting of San Francisco Bay. Hydrobiologia 129: 1–12.Google Scholar
  14. Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelli & H. dos Santos, 1988. Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnol. Oceanogr. 33: 41–56.Google Scholar
  15. Hager, S.W. & L. E. Schemel, 1997. Dissolved nutrient data for the San Francisco Estuary, California, January through November 1995. U.S. Geological Survey Open-file Report 97-359.Google Scholar
  16. Hamilton, S. K. & W. M. Lewis, Jr., 1987. Causes of seasonality in the chemistry of a lake on the Orinoco River floodplain, Venezuela. Limnol. Oceanogr. 32: 1277–1290.Google Scholar
  17. Hamilton, S. K., W. M. Lewis, Jr. & S. J. Sippel, 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.Google Scholar
  18. Hein, T., G. Heiler, D. Pennetzdorfer, P. Riedler, M. Schagerl & F. Schiemer, 1999. The Danube Restoration Project: Functional aspects and planktonic productivity in the floodplain system. Regul. Riv.: Res. Manage. 15: 259–270.Google Scholar
  19. Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armour, J. E. Cloern, T. M. Powell, J. R. Schubel & T. J. Vendlinski, 1995. Isohaline position as a habitat indicator for estuarine populations. Ecol. Appl. 5: 272–289.Google Scholar
  20. Jassby, A. D. & J. E. Cloern, 2000. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA). Aquat. Conserv.: Mar. Freshwat. Ecosyst. 10: 323–352.Google Scholar
  21. Jassby, A. D., J. E. Cloern & B. E. Cole, 2002. Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnol. Oceanogr. 47: 698–712.Google Scholar
  22. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The Flood Pulse Concept in River-Floodplain Systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  23. Kimmerer, W. J. & J. J. Orsi, 1996. Changes in the zooplankton of the San Francisco Bay estuary since the introduction of the clam, Potamocorbula amurensis. In Hollibaugh, J. T. (ed.), San Francisco Bay The Ecosystem. Pacific Division, American Association for the Advancement of Science, San Francisco, CA: 403–424.Google Scholar
  24. Knowlton, M. F. & J. R. Jones, 1997. Trophic status of Missouri River floodplain lakes in relation to basin type and connectivity. Wetlands 17: 468–475.Google Scholar
  25. Lesack, L. F. W. & J. M. Melack, 1995. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Wat. Resour. Res. 31: 329–345.Google Scholar
  26. Lewis, Jr., W. M., S. K. Hamilton, M. A. Lasi, M. Rodrigues & J. F. Saunders III, 2000. Ecological determinism on the Orinoco floodplain. BioScience 50: 681–692.Google Scholar
  27. Lewis, Jr., W. M., S. K. Hamilton, M. A. Rodrigues, J. F. Saunders III & M. A. Lasi, 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. J. N. Am. Benthol. Soc. 20: 241–254.Google Scholar
  28. Lucas, L. V., J. E. Cloern, J. K. Thompson & N. E. Monsen, 2002. Functional variability of habitats within the Sacramento-San Joaquin Delta: restoration implications. Ecol. Appl. 12: 1528–1547.Google Scholar
  29. Marker, A. F., E. A. Nunsch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 91–106.Google Scholar
  30. Mertes, L. A. K., 1997. Documentation and significance of the perirheic zone on inundated floodplains. Wat. Res. Res. 33: 1747–1762.Google Scholar
  31. Monsen, N. E., 2000. A study of sub-tidal transport in Suisun Bay and the Sacramento-San Joaquin Delta, California. Unpublished Ph.D. thesis. Stanford University, Stanford, CA.Google Scholar
  32. Müller-Solger, A. B., A. D. Jassby & D. C. Müller-Navarra, 2002. Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system (Sacramento-San Joaquin River Delta, USA). Limnol. Oceanogr. 47: 1468–1476.Google Scholar
  33. Nichols, F. H., J. E. Cloern, S. N. Luoma & D. H. Peterson, 1986. The modification of an estuary. Science 231: 525–648.Google Scholar
  34. Orsi, J. J. & W. L. Mecum, 1986. Zooplankton distribution and abundance in the Sacramento-San Joaquin Delta in relation to certain environmental factors. Estuaries 9: 326–339.Google Scholar
  35. Schemel, L. E. & M. H. Cox, 1999. Overview of chemical analyses for the Yolo Bypass. Results and recommendations from 1997 to 1998 Yolo Bypass Studies Attachment B. California Department ofWater Resources, Environmental Services Office, Sacramento, CA.Google Scholar
  36. Schemel, L. E., M. H. Cox, S. W. Hager & T. R. Sommer, 2002. Hydrology and chemistry of floodwaters in the Yolo Bypass, Sacramento River system, California, during 2000. U.S. Geological Survey Water Resources Investigations Report 02-4202. http://pubs.water.usgs.gov/ Google Scholar
  37. Sobczak, W. V., J. E. Cloern, A. D. Jassby & A. B. Müller-Solger, 2002. Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources. Proc. nat. Acad. Sci. U.S.A. 99: 8101–8105.Google Scholar
  38. Sommer, T. R., 2002, The aquatic ecology of the Yolo Bypass floodplain: Evaluation at the species and landscape scales. Unpublished Ph. D. thesis. University of California, Davis, CA.Google Scholar
  39. Sommer, T., R. Baxter & B. Herbold, 1997. Resilience of Splittail in the Sacramento-San Joaquin Estuary. Trans. am. Fish. Soc. 126: 961–976.Google Scholar
  40. Sommer, T. R., W. C. Harrell, M. L. Nobriga, R. Brown, P. Moyle, W. J. Kimmerer & L. E. Schemel, 2001a. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife and agriculture. Fisheries 26: 6–16.Google Scholar
  41. Sommer, T. R., M. L. Nobriga, W. C. Harrell, W. Batham & W. J. Kimmerer, 2001b. Floodplain rearing of juvenile chinook salmon: evidence of enhanced growth and survival. Can. J. Fish. aquat. Sci. 58: 325–333.Google Scholar
  42. Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwat. Biol. 41: 521–535.Google Scholar
  43. Tockner, K., F.Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrol. Proc. 14: 2861–2883.Google Scholar
  44. Unrein, F., 2002. Changes in phytoplankton community along a transversal section of the Lower Parana floodplain, Argentina. Hydrobiologia 468: 123–134.Google Scholar
  45. Van den Brink, F.W. B., J. P. H.M. de Leeuw, G. Van der Velde & G. Verheggen, 1993. Impact of hydrology on the chemistry and hytoplankton development in floodplain lakes along the Lower Rhine and Meuse. Biogeochemistry 19: 103–128.Google Scholar
  46. Van den Brink, F. W. B., M. M. Van Katwijk & G. Van der Velde, 1994. Impact of hydrology on the phyto-and zooplankton community composition in floodplain lakes along the lower Rhine and Meuse. J. Plankton Res. 16: 351–371.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Laurence Edward Schemel
    • 1
  • Ted R. Sommer
    • 1
  • Anke B. Müller-Solger
    • 1
  • William C. Harrell
    • 1
  1. 1.Water Resources DivisionU.S. Geological SurveyMenlo ParkU.S.A

Personalised recommendations