Siberian Mathematical Journal

, Volume 45, Issue 4, pp 740–762 | Cite as

Around the Proof of the Legendre–Cauchy Lemma on Convex Polygons

  • I. Kh. Sabitov


We briefly describe the history of the proofs of the well-known Cauchy lemma on comparison of the distances between the endpoints of two convex open polygons on a plane or sphere, present a rather analytical proof, and explain why the traditional constructions lead in general to inevitable appearance of nonstrictly convex open polygons. We also consider bendings one to the other of two isometric open or closed convex isometric polygons.

convex polygon isometry of polygons distance between endpoints of an open polygon isometric deformation of a polygon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cauchy A. L., "Sur les polygones et polyèdres, Second mémoire," J. de l'Ecole Polythéchnique, 9, 87–98 (1813).Google Scholar
  2. 2.
    Legendre A.-M.,Eléments de géométrie. Première edition, Paris, 1794, Note XII, pp. 321–334.Google Scholar
  3. 3.
    Connelly R., "Rigidity," in: Handbook of Convex Geometry, North-Holland, Amsterdam etc., 1993, pp. 223–271.Google Scholar
  4. 4.
    Hadamard J., Elementary Geometry. Part 2 [in Russian], Uchpedgiz, Moscow (1958).Google Scholar
  5. 5.
    Alexandrov A. D., Convex Polyhedra [in Russian], GITTL, Moscow; Leningrad (1950).Google Scholar
  6. 6.
    Lyusternik L. A., Convex Figures and Polyhedra [in Russian], GITTL, Moscow (1956).Google Scholar
  7. 7.
    Berger M., Géométrie. T. 2, Cédic/Fernand Nathan, Paris (1979).Google Scholar
  8. 8.
    Steinitz E.,"Polyeder und Raumeinteilungen," Encycl. Math. Wiss., Bd. 3, 1–139 (1916).Google Scholar
  9. 9.
    Steinitz E. and Rademacher H., Vorlesungen über die Theorie der Polyeder, Springer-Verlag, Berlin (1934).Google Scholar
  10. 10.
    Schoenberg I. J. and Zaremba S. K., "On Cauchy's lemma concerning convex polygons," Canad. J. Math., 19, 1062–1071(1967).Google Scholar
  11. 11.
    Aigner M. and Ziegler G., Proofs from THE BOOK, Springer-Verlag, Berlin etc. (1998).Google Scholar
  12. 12.
    Milka A. D., What Is Geometry "in the Large"? [in Russian], Znanie, Moscow (1986).Google Scholar
  13. 13.
    Sabitov I. Kh., "What is the sum of the angles of polyhedra?," Kvant, No. 3, 7–12 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • I. Kh. Sabitov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations