Siberian Mathematical Journal

, Volume 45, Issue 4, pp 618–627 | Cite as

Uniqueness in One Inverse Problem for the Elasticity System

  • A. L. Bukhgeim
  • G. V. Dyatlov
  • V. B. Kardakov
  • E. V. Tantserev


We consider an inverse problem for the stationary elasticity system with constant Lame coefficients and a variable matrix coefficient depending on the spatial variables and frequency. The right-hand side contains a delta-function whose support (source) varies in some domain disjoint from the support of the variable coefficient. The inverse problem is to find the coefficient from the scattered wave measured at the same point at which the perturbation originates. A uniqueness theorem is proven. The proof bases on reduction of the inverse problem to a family of equations with the M. Riesz potential.

inverse problem elasticity system memory Riesz potential integral equation of the first kind low frequency data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riesz M., "Integrales de Riemann-Liouville et potentiels,"Acta Szeged, 9, 1–42 (1938).Google Scholar
  2. 2.
    Lavrent′ev M. M., "On an inverse problem for the wave equation," Dokl. Akad. Nauk SSSR, 157, No.3, 520–521 (1964).Google Scholar
  3. 3.
    Lavrent′ev M. M., "On one class of inverse problems for differential equations," Dokl. Akad. Nauk SSSR, 160, No. 1, 32–35 (1965).Google Scholar
  4. 4.
    Lavrent′ev M. M., Romanov V. G.,and Shishatskiİ S. P., Ill-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    Bukhgeľm A. L., Volterra Equations and Inverse Problems [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  6. 6.
    Isakov V., Inverse Source Problems, AMS, Providence RI (1990).Google Scholar
  7. 7.
    Ramm A. G., Multidimensional Scattering Inverse Problems [Russian translation], Mir, Moscow (1994).Google Scholar
  8. 8.
    Bukhgeİ m A. L. and Dyatlov G. V., "Uniqueness in one inverse problem of memory reconstruction," Sibirsk. Mat. Zh., 37, No. 3, 526–533 (1996).Google Scholar
  9. 9.
    Kupradze V. D., The Potential Methods in Elasticity [in Russian], Fizmatgiz, Moscow (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. L. Bukhgeim
    • 1
  • G. V. Dyatlov
    • 1
  • V. B. Kardakov
    • 2
  • E. V. Tantserev
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk
  2. 2.Novosibirsk State University of Architecture and BuildingNovosibirsk

Personalised recommendations