Skip to main content
Log in

Consequence for Wavefunction Collapse Model of the Sudbury Neutrino Observatory Experiment

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown that data on the dissociation rate of deuterium obtained in an experiment at the Sudbury Neutrino Observatory provides evidence that the Continuous Spontaneous Localization wavefunction collapse model should have mass–proportional coupling to be viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Bell, in Sixty-Two Years of Uncertainty A. Miller, ed. (Plenum, New York 1990), p. 17.

    Google Scholar 

  2. P. Pearle, Phys. Rev. D 13, 857 (1976).

    Google Scholar 

  3. P. Pearle, Int. J. Theor. Phys. 48, 489 (1979); Found. Phys. 12, 249 (1982).

    Google Scholar 

  4. P. Pearle, Phys. Rev. A 39, 2277 (1989).

    Google Scholar 

  5. Some references in which appear elucidation and extension of the ideas introduced in Ref. [4]are: G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990); G. C. Ghirardi, and P. Pearle in PSA 1990, Vol. 2, A. Fine, M. Forbes and L. Wessels, eds. (Philosophy of Science Association, Michigan, 1990); Aicardi, A. Borsellino, G. C. Ghirardi, and R. Grassi, Found Phys. Lett. 4, 109 (1991); G. C. Ghirardi and A. Rimini, in Sixty-Two Years of Uncertainty, A. Miller, ed. (Plenum, New York 1990), p. 167; P. Pearle, Phys. Rev. A 48, 913 (1993); P. Pearle, in Stochastic Evolution of Quantum States in Open Systems and in Measurement Processes, L. Diosi and B. Lukacs, eds. (World Scientific, Singapore, 1994), p. 79.;P. Pearle, in The Interpretation of Quantum Theory;Where Do We Stand?, L. Accardi, ed. (Enciclopedia Italiana, Roma, 1994), p. 187; G. C. Ghirardi, and R. Grassi, Stud. Hist. Philos. Sci. 25, 97 (1994).

    Google Scholar 

  6. The mathematical collapse formalism without commitment to a physical model also appeared in N. Gisin, Helvetica Physica Acta 62, 363 (1989); V. P. Belavkin, Phys. Lett. A 140, 355 (1989);A Barchielli and V. P. Belavkin, J. Phys. A:Math. Gen. 24, 1495 (1991). Collapse models inapplicable to macroscopic objects are discussed in N. Gisin and I. C. Percival, J. Phys. A:Math. Gen. 25, 5677 (1992)and 26, 2245 (1993);I. C. Percival, Proc. Roy. Soc. A 451, 503 (1995)and Quantum State Diffusion, (Cambridge University Press, Cambridge, 1998);D. I. Fivel, Phys. Rev. A 56, 146 (1997). The gravitationally based model of L. Diosi, Phys. Rev. A 40, 1165 (1989)with the necessary modi cation of G. C. Ghirardi, and R. Grassi, and A. Rimini, Phys. Rev. A 42, 1057 (1990) is essentially equivalent to CSL with mass-proportional coupling (the property tested in this paper). The gravitationally based collapse criterion of R. Penrose, Gen. Rel. and Grav. 28, 581 (1996) is not a dynamical theory. The energy-based collapse model of L. P. Hughston, Proc. Roy. Soc. Lond. A, 452, 953 (1996)has been elucidated in S. L. Adler and L. P. Horwitz, J. Math. Phys. 41, 2485 (2000);S. L. Adler, D. C. Brody, T. A. Brun and L. P. Hughston, J. Phys. A:Math. Gen. 34, 8795 (2001);D. C. Brody, and L. P. Hughston, J. Math. Phys. 43, 5254 (2002)and Proc. Roy. Soc. Lon. 459, 2297 (2003);S. L. Adler, J. Phys. A:Math. Gen. 35, 841 (2002);Phys. Rev. D 67, 25007 (2003). This model does not give proper collapse for macroscopic superpositions;see P. Pearle, Phys. Rev. A 69, 042106 (2004).

    Google Scholar 

  7. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986); Phys. Rev. D 36, 3287 (1987); Found Phys. 18, 1 (1988).

    Google Scholar 

  8. P. Pearle, Phys. Rev. D 29, 235 (1984); A. Zeilinger in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 16;A. Zeilinger, R. Gaehler, C. G. Shull, W. Treimer and W. Mampe, Rev. Mod. Phys. 60, 1067 (1988); A. J. Leggett, Found. Phys. 29, 445 (1999);J. R. Clauser in Experimental Metaphysics, R. S. Cohen, M. Horne, and J. Stachel, eds. (Kluwer Academic, Dordrecht, 1997), p. 1;W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003).

    Google Scholar 

  9. C. Henkel, M. Nest, P. Domokos, and R. Folman,"Optical discrimination between spatial decoherence and thermalization of a massive object," arXiv:quant-ph/0310160.

  10. F. Karolyhazy, Nuovo Cimento 42A, 1506 (1966);F. Karolyhazy, A Frenkel, and B. Lukacs, in Physics as Natural Philosophy, A. Shimony and H. Feshbach, eds. (M. I. T. Press, Cambridge, 1982), p. 204;in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 109;A. Frenkel, Found. Phys. 20, 159 (1990);Ref. [7 ];L. Diosi, Phys. Lett. A 132, 233 (1988);L. Diosi, Phys. Rev. A 40, 1165 (1989);F. Benatti, G. C. Ghirardi and R. Grassi, Found. Phys. 35, 5 (1995);A. Bassi and G. C. Ghirardi, Brit. J. Phil. Sci. 50, 719 (1999);B. Collett and P. Pearle, Found Phys. 33, 1495 (2003).

    Google Scholar 

  11. L. Diosi and B. Lukacs, Phys. Lett. A 181, 366 (1993);Q. Fu. Phys. Rev. A 56, 1806 (1997).

    Google Scholar 

  12. Ref. [7 ]; E. J. Squires, Phys. Lett. A 158, 431 (1991); L. E. Ballentine, Phys. Rev. A 43, 9 (1991).

    Google Scholar 

  13. P. Pearle, Found. Phys. 30, 1145 (2000).

    Google Scholar 

  14. P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1 (1994).

    Google Scholar 

  15. L. Diosi, in Ref. [10 ]. G. C. Ghirardi, R. Grassi and A. Rimini, Phys. Rev. A 42, 1057 (1990). R. Penrose in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 129;in The Emperor 's New Mind, (Oxford University Press, Oxford, 1992)and in Shadows of the Mind, (Oxford University Press, Oxford, 1994)and in Ref. [6 ]; P. Pearle and E. Squires, Found. Phys. 26, 291 (1996).

    Google Scholar 

  16. G. C. Ghirardi and T. Weber, in Potentialities, Entanglement and Passionata Distance, Quantum Mechanical Studies for Abner Shimony, R. S. Cohen, M. Horne, and J. Stachel, eds. (Kluwer Academic, Dordrecht, 1997), p. 89.

    Google Scholar 

  17. P. Pearle, in Experimental Metaphysics, R. S. Cohen, M. Horne, and J. Stachel, eds. (Kluwer Academic, Dordrecht, 1997), p. 143.

    Google Scholar 

  18. A. Rimini, Found. Phys. 27, 1689 (1997).

    Google Scholar 

  19. H. S. Miley, F. T. Avignone III, R. L. Brodzinski, J. I. Collar, and J. H. Reeves, Phys. Rev. Lett. 65, 3092 (1990).

    Google Scholar 

  20. B. Collett, P. Pearle, F. Avignone, and S. Nussinov, Found. Phys. 25, 1399 (1995); P. Pearle, James Ring, J. I. Collar and F. T. Avignone III, Found. Phys. 29, 465 (1999).

    Google Scholar 

  21. The most recent data, which we use, is in SNO Collaboration, Phys. Rev. Lett 92, 181301 (2004). A previous paper is Phys. Rev. Lett. 89, 011301 (2002).

    Google Scholar 

  22. E. Segr´e, Nuclei and Particles (Benjamin, New York 1964), pp. 380-382; J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1960), pp. 49-56.

    Google Scholar 

  23. J. Bahcall, Astrophys. J. 555, 990 (2001).

    Google Scholar 

  24. SNO collaboration, Nucl. Instr. And Meth. A449, 172 (2000).

    Google Scholar 

  25. We note, until the uncertainty is reduced by that amount, the results are also consistent with baryon number proportionality. This would imply, e. g., that a macroscopically distinguishable superposition of leptons or of mesons would never collapse, and one might regard that as an undesirable feature of a collapse model.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, G., Pearle, P. & Ring, J. Consequence for Wavefunction Collapse Model of the Sudbury Neutrino Observatory Experiment. Foundations of Physics 34, 1467–1474 (2004). https://doi.org/10.1023/B:FOOP.0000044101.51344.93

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000044101.51344.93

Navigation