Skip to main content
Log in

When Can Statistical Theories Be Causally Closed?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The notion of common cause closedness of a classical, Kolmogorovian probability space with respect to a causal independence relation between the random events is defined, and propositions are presented that characterize common cause closedness for specific probability spaces. It is proved in particular that no probability space with a finite number of random events can contain common causes of all the correlations it predicts; however, it is demonstrated that probability spaces even with a finite number of random events can be common cause closed with respect to a causal independence relation that is stronger than logical independence. Furthermore it is shown that infinite, atomless probability spaces are always common cause closed in the strongest possible sense. Open problems concerning common cause closedness are formulated and the results are interpreted from the perspective of Reichenbach's Common Cause Principle (RCCP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Arntzenius, "The common cause principle, "PSA 1992 2, 227–237 (1993).

    Google Scholar 

  2. N. Belnap and L. E. Szabó, "Branching space-time analysis of the GHZ theorem, " Found. Phys. 26, 989–1002 (1996)

    Google Scholar 

  3. J. Butterfield, "A space-time approach to the Bell inequality, "in Philosophical Consequences of Quantum Theory, J. Cushing and E. McMullin, eds. (University of Notre Dame Press, Notre Dame, 1989), pp. 114–144.

    Google Scholar 

  4. N. Cartwright, "How to tell a common cause:generalization of the conjunctive fork criterion, "in Probability and Causality, J. H. Fetzer, ed. (Reidel, Boston, 1987), pp. 181–188.

    Google Scholar 

  5. J. H. Fetzer, ed., Probability and Causality (Reidel, Boston, 1988).

    Google Scholar 

  6. R. Haag, Local Quantum Physics (Springer, New York, 1992).

    Google Scholar 

  7. P. Halmos, Measure Theory (Van Nostrand, New York, 1950).

    Google Scholar 

  8. G. Hofer-Szabó, M. Rédei, and L. E. Szabó, "Reichenbach 's common cause principle: recent results and open questions, "Rep. Phil. 20, 85–107 (2000).

    Google Scholar 

  9. G. Hofer-Szabó, M. Rédei, and L. E. Szabó, "On Reichenbach 's common cause principle and Reichenbach 's notion of common cause, "Brit. J. Phil. Sci. 50, 377–398 (1999).

    Google Scholar 

  10. T. Placek, "Stochastic outcomes in branching space-time. An analysis of Bell theorems, "Brit. J. Phil. Sci. 51, 445–475 (2000).

    Google Scholar 

  11. T. Placek, Is Nature Deterministic? (Jagellonian University Press, Cracow, 2000).

    Google Scholar 

  12. M. Rédei, "Logical independence in quantum logic, "Found. Phy. 25, 411–422 (1995).

    Google Scholar 

  13. M. Rédei, "Logically independent von Neumann lattices, "Inter. J. Theor. Phys. 34, 1711–1718 (1995).

    Google Scholar 

  14. M. Rédei, "Reichenbach 's common cause principle and quantum field theory, "Found. Phy. 27, 1309–1321 (1997).

    Google Scholar 

  15. M. Rédei, Quantum Logic in Algebraic Approach (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  16. M. Rédei, "Reichenbach 's common cause principle and quantum correlations, "in Modality, Probability and Bell 's Theorems, NATO Science Series II, Vol. 64, T. Placek and J. Butterfield, eds. (Kluwer Academic, Dordrecht, 2002), pp. 259–270.

    Google Scholar 

  17. M. Rédei and S. J. Summers, "Local primitive causality and the common cause principle in quantum field theory, "Found. Phy. 32, 335–355 (2002).

    Google Scholar 

  18. M. Rédei and S. J. Summers, "Remarks on causality in relativistic quantum eld theory, "Intern. J. Theor. Phy. (forthcoming, preprint version:quant-ph/0302115).

  19. H. Reichenbach, The Direction of Time (University of California Press, Los Angeles, 1956).

    Google Scholar 

  20. W. C. Salmon, "Why ask 'Why?', ?"Proceedings and Addresses of the American Philosophical Association 51, 683–705 (1978).

    Google Scholar 

  21. W. C. Salmon, "Probabilistic causality, "Pacfic Philosophical Quarterly 61, 50–74 (1980).

    Google Scholar 

  22. W. C. Salmon, Scientific Explanation and the Causal Structure of the World (Princeton University Press, Princeton, 1984).

    Google Scholar 

  23. E. Sober, "Common cause explanation, "Phil. Sci. 51, 212–241 (1984).

    Google Scholar 

  24. E. Sober, "The principle of the common cause "in [5 ], pp. 211–228.

  25. E. Sober, "Venetian sea levels, British bread prices, and the principle of common cause, "Brit. J. Phil. Sci. 52, 331–346 (2001).

    Google Scholar 

  26. W. Spohn, "On Reichenbach 's principle of the common cause, "in Logic, Language and the Structure of Scienti c Theories, W. Salmon and G. Wolters, eds. (University of Pittsburgh Press, Pittsburgh, 1991), pp. 211–235.

    Google Scholar 

  27. S. J. Summers, "Bell 's inequalities and quantum field theory, "in Quantum Probability and Applications V., (Lecture Notes in Mathematics #1441)(Springer, New York), pp. 393–413.

  28. S. J. Summers, "On the independence of local algebras in quantum field theory, "Rev. Math. Phys. 2, 201–247 (1990).

    Google Scholar 

  29. P. Suppes, A Probabilistic Theory of Causality (North-Holland, Amsterdam, 1970).

    Google Scholar 

  30. P. Suppes and M. Zanotti, "When are probabilistic explanations possible?, "Synthese 48, 191–199 (1980).

    Google Scholar 

  31. J. Uffink, "The principle of the common cause faces the Bernstein Paradox, "Phil. Sci.Suppl. 66, 512–525 (1999).

    Google Scholar 

  32. B. C. Van Fraassen, "The pragmatics of explanation, "Am. Phil. Quart. 14, 143–150 (1977).

    Google Scholar 

  33. B. C. Van Frassen, "Rational belief and the common cause principle, "in What? Where?When?Why?, R. McLaughlin, ed. (Reidel, Boston, 1982), pp. 193–209.

    Google Scholar 

  34. B. C. Van Fraassen, "The charybdis of realism:epistemological implications of Bell 's Inequality ", in Philosophical Consequences of Quantum Theory, J. Cushing and E. McMullin, eds. (University of Notre Dame Press, Notre Dame, 1989), pp. 97–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyenis, B., Rédei, M. When Can Statistical Theories Be Causally Closed?. Foundations of Physics 34, 1285–1303 (2004). https://doi.org/10.1023/B:FOOP.0000044094.09861.12

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000044094.09861.12

Navigation