Skip to main content
Log in

The Split of the Dirac Hamiltonian into Precisely Predictable Energy Components

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We are dealing with the Dirac Hamiltonian H = H0 + V with no magnetic field and radially symmetric electrostatic potential V = V(r), preferably the Coulomb potential. While the observable H is precisely predictable, its components H0 (relativistic mass) and V (potential energy) are not. However they both possess precisely predictable approximations H0 and V which approximate accurately if the particle is not near its nucleus. On the other hand, near 0, H0 and V are practically unpredictable, perhaps in agreement with the fact, that a neutrino also should be in the game. [We have not yet studied the corresponding observables for the (≥ 12-dimensional) problem of electro-weak interaction.] Mathematically we are focusing on the spectral theory of the unbounded self-adjoint operators H0 and V . We can prove that V is unitarily equivalent to V(r) again, by a unitary map given as Wiener-Hopf-type singular integral operator in the standard separation of variables for radially symmetric Dirac Hamiltonians. [This is, as far as the continuous spectrum is concerned.] Very similar unitary equivalence holds for H 0 and H 0. We are tempted to regard this as a form of “renormalization”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. v. Neuman, Die Mathematischen Grundlagen der Quantenmechanik (Springer, New York, 1932; reprinted: Dover 1943; English trsl, Princeton University press, 1955).

    Google Scholar 

  2. D. Dieks and P. Vermaas, The Modal Interpretation of Quantum Mechanics (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  3. H. O. Cordes, “On pseudodifferential operators and smoothness of special Lie group representations,” Manuscripta Math. 28, 51–69 (1979).

    Google Scholar 

  4. H. O. Cordes, Proc. Inst. Math. NAS Ukraine, 50, 671–676 (2003).

    Google Scholar 

  5. H. O. Cordes, “A pseudo-algebra of observables for the Dirac equation,” Manuscripta Math. 45, 77–105 (1983).

    Google Scholar 

  6. H. O. Cordes, The Technique of Pseudodifferential Operators (London Math. Soc. Lecture Notes 202, University Press, Cambridge, 1995).

    Google Scholar 

  7. H. O. Cordes, “A precise pseudodifferential Foldy-Wouthuysen transform for the Dirac equation,” J. Evolution Equations 4, 125–138 (2004).

    Google Scholar 

  8. T. Kato, Perturbation Theory for Linear Operators (Springer, NewYork, 1966).

    Google Scholar 

  9. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. (Springer, New York, 1966).

    Google Scholar 

  10. W. Magnus and F. Oberhettinger, Formeln und Saetze fuer die Speziellen Funktionen der Mathematischen Physik, 2nd edn. (Springer, Berlin, 1948).

    Google Scholar 

  11. I. Gohberg and N. Krupnik, Einfuehrung in die Theorie der Eindimensionalen Singulaeren Integraloperatoren (Birkhaeuser, Basel, 1979).

    Google Scholar 

  12. H. O. Cordes, “Pseudo-differential operators on the halfline,” J.Math.Mech. 18, 893–908 (1969).

    Google Scholar 

  13. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    Google Scholar 

  14. E. L. Ince, Ordinary Differential Equations (Dover, NewYork, 1956).

    Google Scholar 

  15. J. Horn, Gewoehnliche Differentialgleichungen (De Gruyter, Berlin, 1948).

    Google Scholar 

  16. E. Kamke, Differentialgleichungen, Loesungsmethoden und Loesungen (Chelsea, New York, 1966).

    Google Scholar 

  17. M. A. Naimark, Linear Differential Operators II (Ungar, New York, 1968).

    Google Scholar 

  18. H. Kittler, “Das Verhalten der bei x = +∞ normierten Loesungen von–u″ + V (x)u = k 2u in ihrer Abhaengigkeit von k,” Ph.D.-thesis (Goettingen, ≈ 1952).

  19. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (CUP, Cambridge, 1934).

    Google Scholar 

  20. H. O. Cordes, “A pseudodifferential Foldy-Wouthuysen transform,” Communications in PDE 8(13), 1475–1485 (1983).

    Google Scholar 

  21. H. O. Cordes, “On Dirac observables,” Progress in Nonlinear DE 42, 61–77 (Birkhaeuser, Basel, 2000).

    Google Scholar 

  22. H. O. Cordes, “Dirac algebra and Foldy-Wouthuysen transform,” Evolution Equations and Their Applications , Lumer-Weis, ed. (Marcel Dekker, NewYork, 2000).

    Google Scholar 

  23. E. deVries, “Foldy-Wouthuysen transformations and related problems,” Fortschr. D. Phys. 18, 149–182 (1970).

    Google Scholar 

  24. B. Thaller, The Dirac Equation (Springer, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordes, H.O. The Split of the Dirac Hamiltonian into Precisely Predictable Energy Components. Foundations of Physics 34, 1117–1153 (2004). https://doi.org/10.1023/B:FOOP.0000041287.25713.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000041287.25713.fe

Navigation