Skip to main content
Log in

Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures (POVMs), as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems (qubits) and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of a qubit, we investigate similar results for frame functions defined upon various restricted classes of POVMs. For the so-called trine measurements, the standard quantum probability rule is again recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Kochen and E. P. Specker, J. Math. Mech. 17, 59(1967).

    Google Scholar 

  2. A. M. Gleason, J. Math. Mech. 6, 885(1957).

    Google Scholar 

  3. C. A. Fuchs, “Quantum mechanics as quantum information (and only a little more),” quant-ph/0205039.

  4. R. J. Greechie and D. J. Foulis, Int. J. Theor. Phys. 34, 1369(1995).

    Google Scholar 

  5. G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1983).

    Google Scholar 

  6. K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics, Vol. 190 (Springer, Berlin, 1983).

    Google Scholar 

  7. P. Busch, M. Grabowski, and P. Lahti, Operational Quantum Physics (Springer, Berlin, 1995); 2nd corrected printing, 1997.

    Google Scholar 

  8. P. Busch, “Resurrection of von Neumann's no-hidden-variables theorem,” quant-ph/ 9909073.

  9. D. A. Meyer, Phys. Rev. Lett. 83, 3751(1999).

    Google Scholar 

  10. R. Clifton and A. Kent, Proc. Roy. Soc. London Ser. A 456, 2101(2000).

    Google Scholar 

  11. D. M. Appleby, Phys. Rev. A 65, 022105(2002).

    Google Scholar 

  12. A. Cabello, Phys. Rev. A 65, 052101(2002).

    Google Scholar 

  13. W. Tung, Group Theory in Physics (World Scientific, Philadelphia, 1993).

    Google Scholar 

  14. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, The Netherlands, 1993).

    Google Scholar 

  15. A. Cabello, Phys. Rev. Lett. 90, 190401(2003).

    Google Scholar 

  16. G. M. D'Ariano and P. L. Presti, “Classical and quantum noise in measurements and transformations,” quant-ph/0301110.

  17. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caves, C.M., Fuchs, C.A., Manne, K.K. et al. Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements. Foundations of Physics 34, 193–209 (2004). https://doi.org/10.1023/B:FOOP.0000019581.00318.a5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000019581.00318.a5

Navigation