Skip to main content
Log in

Quantum Entanglement in Relativistic Three-Particle Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The relativistic three-particle systems are studied within the framework of Relativistic Schrödinger Theory (RST), with emphasis on the determination of the energy functional for the stationary bound states. The phenomenon of entanglement shows up here in form of the exchange energy which is a significant part of the relativistic field energy. The electromagnetic interactions become unified with the exchange interactions into a relativistic U(N) gauge theory, which has the Hartree–Fock equations as its non-relativistic limit. This yields a general framework for treating entangled states of relativistic many-particle systems, e.g., the N-electron atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. Schrödinger, Naturwiss. 23, 807-812; 823-828; 844-849 (1933), reprinted in Ref. 2.

    Google Scholar 

  2. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  3. G. J. Milburn, Schrödinger's Machines (Freeman, San Francisco, 1997).

    Google Scholar 

  4. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2001).

    Google Scholar 

  5. F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  6. R. Omnes, The Interpretation of Quantum Mechanics(Princeton University Press, Princeton, 1994).

    Google Scholar 

  7. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777(1935).

    Google Scholar 

  8. G. Auletta, Foundations and Interpretation of Quantum Mechanics (World Scientific, Singapore, 2000).

    Google Scholar 

  9. M. Sorg, J. Phys. A 30, 5517(1997).

    Google Scholar 

  10. M. Mattes, S. Rupp, and M. Sorg, Can. J. Phys. 79, 879(2001).

    Google Scholar 

  11. S. Rupp, Phys. Rev. A 67, 034101(2003).

    Google Scholar 

  12. M. Verschl and M. Sorg, “Relativistic Schrödinger Theory and the Hartree-Fock Approach,” Found. Phys. 33(6), 893(2003).

    Google Scholar 

  13. G. Baym and C. Pethick, Landau Fermi liquid Theory(Wiley, New York, 1991).

    Google Scholar 

  14. C. M. Savage and M. P. Das, eds., Bose-Einstein Condensation (World Scientific, Singapore, 2000).

    Google Scholar 

  15. C. Froese Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1977).

    Google Scholar 

  16. C. Froese Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure (Institute of Physics Publishing, Bristol, 1997).

    Google Scholar 

  17. K. Goeke and P. G. Reinhard, Time-Dependent Hartree-Fock and Beyond, Proceedings Bad Honnef, Germany (Springer, Berlin, 1982).

    Google Scholar 

  18. L. E. Ballentine, Quantum Mechanics (World Scientific, Singapore, 1998).

    Google Scholar 

  19. W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin, 2000).

    Google Scholar 

  20. T. Sigg and M. Sorg, Gen. Rel. Grav. 29, 1557(1997).

    Google Scholar 

  21. M. Mattes and M. Sorg, J. Math. Phys. 40, 71(1999).

    Google Scholar 

  22. J. P. Crawford, J. Math. Phys. 26, 1439(1985).

    Google Scholar 

  23. S. Rupp, T. Sigg, and M. Sorg, Int. J. Theor. Phys. 39, 1543(2000).

    Google Scholar 

  24. G. D. Mahan, Many-Particle Physics (Plenum, 1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sorg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schust, P., Mattes, M. & Sorg, M. Quantum Entanglement in Relativistic Three-Particle Systems. Foundations of Physics 34, 99–167 (2004). https://doi.org/10.1023/B:FOOP.0000012011.48629.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000012011.48629.5a

Navigation