Advertisement

Investigational New Drugs

, Volume 22, Issue 1, pp 17–26 | Cite as

The Antiangiogenic Agent Neovastat (Æ-941) Stimulates Tissue Plasminogen Activator Activity

  • Denis Gingras
  • Dominique Labelle
  • Carine Nyalendo
  • Dominique Boivin
  • Michel Demeule
  • Chantal Barthomeuf
  • Richard Béliveau
Article

Abstract

The plasminogen activator/plasmin system represents a key component of the proteolytic machinery underlying angiogenesis. In this work, we investigated the effect of Neovastat (Æ-941), a naturally occurring multifunctional antiangiogenic agent that is currently in Phase III clinical trials, on tissue and urokinase plasminogen activator activities. We found that in vitro, Neovastat at 100μg/ml markedly stimulates t-PA-mediated plasmin generation, while it slightly inhibits the generation of plasmin mediated by uPA. The stimulatory effect of Neovastat on t-PA activity was markedly increased by a heat treatment, resulting in a 15-fold increase in the rate of activation of plasminogen. Neovastat did not directly stimulate the activity of t-PA or plasmin towards exogenous substrates, suggesting that its effect requires the presence of plasminogen. Accordingly, kinetic analysis showed that Neovastat increases both the kcat of t-PA as well as its affinity for plasminogen by 10-fold. The stimulation of t-PA activity by Neovastat was also correlated with a direct interaction of Neovastat with plasminogen as monitored by the surface plasmon resonance technology. Overall, these results identify Neovastat as a potent stimulator of t-PA-dependent activation of plasminogen, further emphasizing its pleiotropic mechanism of action on several molecular events involved in angiogenesis.

Neovastat Æ-941 angiogenesis t-PA endothelial cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31, 1995Google Scholar
  2. 2.
    Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996Google Scholar
  3. 3.
    Pepper MS: Role of matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104–1117, 2001Google Scholar
  4. 4.
    Lijnen HR, Collen D: Mechanisms of physiological fibrinolysis. Baillière's Clin Haematol 8: 277–290, 1995Google Scholar
  5. 5.
    Murphy G, Gavrilovic J: Proteolysis and cell migration: Creating a path? Curr Opin Cell Biol 11: 614–621, 1999Google Scholar
  6. 6.
    Gyetko MR, Todd RF III, Wilkerson CC, Sitrin RG: The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 93: 1380–1398, 1994Google Scholar
  7. 7.
    Min HY, Doyle LV, Vitt CR, Zandonella L, Stratton-Thomas JR, Shuman MA, Rosenberg S: Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res 56: 2428–2433, 1996Google Scholar
  8. 8.
    Huber D, Cramer EM, Kaufmann JE, Meda P, Massé JM, Kruithof EKO, Vischer UM: Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood 99: 3637–3645, 2002Google Scholar
  9. 9.
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994Google Scholar
  10. 10.
    Westphal JR, Van't Hullenaar R, Geurts-Moespot A, Sweep FCJG, Verheijen JH, Bussemakers MMG, Askaa J, Clemmensen I, Eggermont AAM, Rutter DJ, De Waal RMW: Angiostatin generation by human tumor cell lines: Involvement of plasminogen activators. Int J Cancer 86: 760–767, 2000Google Scholar
  11. 11.
    Ferrier CM, Suciu S, van Geloof WL, Straatman H, Eggermont AAM, Koops HS, Kroon BBR, Lejeune FJ, Kleeberg UR, van Muijen GNP, Ruiter DJ: High t-PA-expression in primary melanoma of the limb correlates with good prognosis. Br J Cancer 83: 1351–1359, 2000Google Scholar
  12. 12.
    Chappuis PO, Dieterich B, Sciretta V, Lohse C, Bonnefoi H, Remadi S, Sappino A-P: Functional evaluation of plasmin formation in primary breast cancer. J Clin Oncol 19: 2731–2738, 2001Google Scholar
  13. 13.
    Sawaya R, Ramo OJ, Shi ML, Mandybur G: Biological significance of tissue plasminogen activator content in brain tumors. J Neurosurg 74: 480–486, 1991Google Scholar
  14. 14.
    Reijerkerk A, Voest EE, Gebbink MFBG: No grip, no growth: The conceptual basis of excessive proteolysis in the treatment of cancer. Eur J Cancer 36: 1695–1705, 2000Google Scholar
  15. 15.
    Gingras D, Batist G, Béliveau R: Æ-941 (Neovastat®): A novel multifunctional antiangiogenic compound. Expert Rev Anticancer Ther 1: 341–347, 2001Google Scholar
  16. 16.
    Batist G, Patenaude F, Champagne P, Croteau D, Levinton C, Hariton C, Escudier B, Dupont E: Neovastat (Æ-941) in refractory renal cell carcinoma patients -Report of a phase II trial with two dose levels. Annals Oncol 13: 1259–1263, 2002Google Scholar
  17. 17.
    Falardeau P, Champagne P, Poyet P, Hariton C, Dupont E: Æ-941 (Neovastat), a naturally occuring multifunctional antiangiogenic product in Phase III clinical trials. Semin Oncol 28: 620–625, 2001Google Scholar
  18. 18.
    Gingras D, Renaud A, Mousseau N, Beaulieu E, Kachra Z, Béliveau R: Matrix proteinase inhibition by Æ-941, a multifunctional antiangiogenic compound. Anticancer Res 21: 145–155, 2001Google Scholar
  19. 19.
    Béliveau R, Gingras D, Kruger EA, Lamy S, Sirois P, Simard B, Sirois MG, Tranqui L, Baffert F, Beaulieu E, Dimitriadou V, Pépin M-C, Courjal F, Ricard I, Poyet P, Falardeau P, Figg WD, Dupont E: The antiangiogenic agent Neovastat (Æ-941) inhibits VEGF-mediated biological effects. Clin Cancer Res 8: 1242–1250, 2002Google Scholar
  20. 20.
    Boivin D, Gendron S, Beaulieu E, Gingras D, Béliveau R: The antiangiogenic agent Neovastat (Æ-941) induces endothelial cell apoptosis. Mol Cancer Ther 1: 795–802, 2002Google Scholar
  21. 21.
    Dupont E, Falardeau P, Mousa SA, Dimitriadou V, Pépin M-C, Wang T, Alaoui-Jamali MA: Antiangiogenic and antimetastatic properties of Neovastat (AE-941), an orally active extract derived from cartilage tissue. Clin Exp Metastasis 19: 145–153, 2002Google Scholar
  22. 22.
    Dupont E, Brazeau P, Juneau C: Extracts of shark cartilage having an antiangiogenic activity and an effect on tumor progression: Process of making thereof. United States Patent, 1997Google Scholar
  23. 23.
    Drapier JC, Tenu JP, Lemaire G, Petit JF: Regulation of plasminogen activator secretion in mouse peritoneal macrophages. I-Role of serum studied by a new spectrophotometric assay for plasminogen activators. Biochimie 61: 463–471, 1979Google Scholar
  24. 24.
    Ranby M: Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 704: 461–469, 1982Google Scholar
  25. 25.
    Machovich R, Owen WG: Denatured proteins as cofactors for plasminogen activation. Arch Biochem Biophys 344: 343–349, 1997Google Scholar
  26. 26.
    Radcliffe R: A critical role of lysine residues in the stimulation of tissue plasminogen activator by denatured proteins and fibrin clots. Biochim Biophys Acta 743: 422–430, 1983Google Scholar
  27. 27.
    Stack S, Gonzalez-Gronow M, Pizzo SV: Regulation of plasminogen activation by components of the extracellular matrix. Biochemistry 29: 4966–4970, 1990Google Scholar
  28. 28.
    Radcliffe R, Heinze T: Stimulation of tissue plasminogen activator by denatured proteins and fibrin clots: A possible additional role for plasminogen activator? Arch Biochem Biophys 211: 750–761, 1981Google Scholar
  29. 29.
    Kranenburg O, Bouma B, Kroon-Batenburg LMJ, Reijerkerk A, Wu Y-P, Voest EE, Gebbink MFBG: Tissue-type plasminogen activator is a multiligand cross-βstructure receptor. Curr Biol 12: 1833–1839, 2002Google Scholar
  30. 30.
    Hayashi S, Yokoyama I, Namii Y, Emi N, Uchida K, Takagi H: Inhibitory effect on the establishment of hepatic metastasis by transduction of the tissue plasminogen activator gene to murine colon cancer. Cancer Gene Ther 6: 380–384, 1999Google Scholar
  31. 31.
    Merchan JR, Chan B, Kale S, Schnipper LE, Sukhatme VP: In vitro and in vivo induction of antiangiogenic activity by plasminogen activators and captopril. J Natl Cancer Inst 95, 388–399, 2003Google Scholar
  32. 32.
    Reijerkerk A, Mosnier LO, Kranenburg O, Bouma BN, Carmeliet P, Drixler T, Meijers JC, Voest EE, Gebbink MF: Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Mol Cancer Res 1, 561–568, 2003Google Scholar
  33. 33.
    Stack MS, Gately S, Bafetti LM, Enghild JJ, Soff GA: Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340: 77–84, 1999Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Denis Gingras
    • 1
  • Dominique Labelle
    • 1
  • Carine Nyalendo
    • 1
  • Dominique Boivin
    • 1
  • Michel Demeule
    • 1
  • Chantal Barthomeuf
    • 1
    • 2
  • Richard Béliveau
    • 1
  1. 1.Laboratoire de médecine moléculaire, Hôpital Ste-Justine-UQAM, Centre de cancérologie Charles-BruneauCentre de Recherche de l'Hôpital Ste-JustineMontréal(Canada)
  2. 2.Laboratoire de Pharmacognosie et BiotechnologiesUMR INSERM U-484Clermont-FdFrance

Personalised recommendations