Skip to main content
Log in

Self-Association of Potassium Nonanoate Molecules in Aqueous Aerosil Dispersions: 13C NMR Data

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The association of potassium nonanoate molecules in aqueous Aerosil dispersions at high and low surface charges of its particles are studied by the 13C NMR technique at frequencies of 75 and 125 MHz with the rotation of a sample at a magic angle. It is shown that, using the chemical shifts and spin–lattice relaxation times of 13C nuclei of single segments of the hydrophobic chain of a surfactant molecule, one can determine whether the segments are located in the adsorption layer on a solid surface or in the associates formed in the bulk solution. The values of the chemical shift and spin–lattice relaxation time depend, above all, on the value of the surface charge. The NMR parameters of two carbon atoms in the hydrophobic chain nearest to the polar group of the surfactant molecule appeared to be the most sensitive to the value of the adsorbent surface charge. It is discovered that, upon adsorption of potassium nonanoate from solutions with concentrations of 1.5–3 wt % and pH 6, the surfactant molecules are located in the adsorption layer parallel to the surface. At a higher surface charge, adsorption in the same concentration range occurs mainly on the hydroxyl groups; in this case, adsorbed molecules are arranged mostly along the normal to the surface. At surfactant concentrations much higher than the CMC (10–20%), the values of the chemical shift and relaxation time become closer to those measured in surfactant solutions in the absence of Aerosil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Subramanian, V. and Ducker, W.A., Langmuir, 2000, vol. 16, p. 4447.

    Google Scholar 

  2. Seredyuk, V., Alami, E., Nyden, N., and Holmberg, K., Langmuir, 2001, vol. 17, p. 5160.

    Google Scholar 

  3. Laszlo, K. and Warr, G.G., Langmuir, 2002, vol. 18, p. 4790.

    Google Scholar 

  4. Penfold, J., Staples, E., Tucker, I., and Thomas, R.K., Langmuir, 2002, vol. 18, p. 5755.

    Google Scholar 

  5. Conzález-García, C.M., González-Martin, M.L., Gallardo-Moreno, A.M., et al., J. Colloid Interface Sci., 2002, vol. 248, p. 13.

    Google Scholar 

  6. Davey, T.W., Warr, G.G., Almgren, M., and Asakawa, T., Langmuir, 2001, vol. 17, p. 5283.

    Google Scholar 

  7. Bitting, D. and Harwell, H., Langmuir, 1987, vol. 3, p. 500.

    Google Scholar 

  8. Nagashima, K. and Blum, F.D., Colloids Surf., A, 2001, vol. 176, p. 17.

    Google Scholar 

  9. Nagashima, K. and Blum, F.D., J. Colloid Interface Sci., 1999, vol. 214, p. 8.

    PubMed  Google Scholar 

  10. Bjelopavlic, M., Singh, P.K., El-Shall, H., and Mondgil, B.M., J. Colloid Interface Sci., 2000, vol. 226, p. 159.

    PubMed  Google Scholar 

  11. Kiselev, A.V. and Lygin, V.I., Infrakrasnye spektry poverkhnostnykh soedinenii (Infrared Spectra of Surface Compounds), Moscow: Nauka, 1972.

    Google Scholar 

  12. Atkin, R., Craig, V.S.J., and Biggs, S., Langmuir, 2001, vol. 17, p. 6155.

    Google Scholar 

  13. Söderman, O. and Stilbs, P., Prog. Nucl. Magn. Reson. Spectrosc., 1994, vol. 26, p. 445.

    Google Scholar 

  14. Ahlnäs, T., Karlström, G., and Lindman, B., J. Phys. Chem., 1987, vol. 91, p. 4030.

    Google Scholar 

  15. Söderlind, E. and Stilbs, P., Langmuir, 1993, vol. 9, p. 1678.

    Google Scholar 

  16. Pettersson, A. and Rosenholm, J.B., Langmuir, 2002, vol. 18, p. 8436.

    Google Scholar 

  17. Pettersson, A. and Rosenholm, J.B., Langmuir, 2002, vol. 18, p. 8447.

    Google Scholar 

  18. Wennerström, H. and Lindman, B., Phys. Rev., 1979, vol. 52, p. 1.

    Google Scholar 

  19. Chernyshev, Yu.S. and Popova, M.V., Vestn. St. Petersb. Univ., Ser. 4: Fiz., Khim., 2001, no. 4, p. 137.

  20. Friman, R., Petersson, K., and Stenius, P., J. Colloid Interface Sci., 1975, vol. 53, p. 90.

    Google Scholar 

  21. Persson, B.-O., Drakenberg, T., and Lindman, B., J. Phys. Chem., 1979, vol. 83, p. 3011.

    Google Scholar 

  22. Clifford, J. and Pethica, B.A., Trans. Faraday Soc., 1965, vol. 61, p. 182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, M.V., Chernyshev, Y.S. Self-Association of Potassium Nonanoate Molecules in Aqueous Aerosil Dispersions: 13C NMR Data. Colloid Journal 66, 567–574 (2004). https://doi.org/10.1023/B:COLL.0000043839.76486.c8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COLL.0000043839.76486.c8

Keywords

Navigation