Advertisement

Automation and Remote Control

, Volume 65, Issue 11, pp 1817–1833 | Cite as

Decision under Multiple Estimates for the Importance Coefficients of Criteria and Probabilities of Values of Uncertain Factors in the Aim Function

  • V. V. Podinovskii
Article

Abstract

Papers on the construction of preference relations by an additive aim function having multiple inexact (interval) estimates for its coefficients are briefly reviewed. Conditions for the nondominance and potential optimality of variants are stated. New results on the relations between two basic definitions of preference relations and qualitative criteria are given.

Keywords

Mechanical Engineer System Theory Preference Relation Basic Definition Qualitative Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Germeier, Yu.B., Vvedenie v teoriyu issledovaniya operatsii (Introduction to the Theory of Operations Research), Moscow: Nauka, 1971.Google Scholar
  2. 2.
    Keeney, R.L. and Raifa, H., Decisions with Multiple Objectives: Preferences and Value Trade-offs, New York: Wiley, 1976. Translated under the title Prinyatie reshenii pri mnogikh kriteriyakh: predpochteniya i zameshcheniya, Moscow: Radio i Svyaz', 1981.Google Scholar
  3. 3.
    Saaty, Th.L., Conflict Resolution: The Analytic Hierarchy Approach, New York: Praeger, 1989. Translated under the title Prinyatie reshenii. Metod analiza ierarkhii, Moscow: Radio i Svyaz', 1993.Google Scholar
  4. 4.
    Larichev, O.I., Teoriya i metody prinyatiya reshenii (Decision Making Theory and Methods), Moscow: Logos, 2002.Google Scholar
  5. 5.
    Ventsel', E.S., Issledovanie operatsii. Zadachi, printsipy, metodologiya (Operations Research: Problems, Principles, and Methodology), Moscow: Nauka, 1980.Google Scholar
  6. 6.
    Stoyer, R., Mnogokriterial'naya optimizatsiya. Teoriya, vychisleniya i prilozhemiya (Multi-Criteria Op-timization: Theory, Computation, and Applications), Moscow: Radio i Svyaz', 1992.Google Scholar
  7. 7.
    Podinovskii, V.V., Solution of Multicriteria Problems via Optimization by One Criterion under Uncer-tainty, Avtomat. Vychisl. Tekh., 1976, no. 2, pp. 45–49.Google Scholar
  8. 8.
    Batishchev, D.I. and Shaposhnikov, D.E., Mnogokriterial'nyi vybor s uchetom individual'nykh predpocht-enii (Multicriteria Choice with regard for Individual Preferences), Nizhni Novgorod: IPF, 1994.Google Scholar
  9. 9.
    Puerto, J., Mármol, A.M., Monroy, and Fernandez, F.R., Decision Criteria with Partial Information, Int. Trans. Oper. Res., 2000, vol. 7, pp. 51–65.Google Scholar
  10. 10.
    Podinovskii, V.V., Estimation of the Importance of Criteria in Multicriteria Decision Making: An Ax-iomatic Solution, in Sovremennoe sostoyanie teorii issledovaniya operatsii (The State-of-the-Art of Op-erations Research Theory), Moscow: Nauka, 1979, pp. 117–149.Google Scholar
  11. 11.
    Podinovskii, V.V., Quantitative Importance of Criteria, Avtom. Telemekh., 2000, no. 5, pp. 110–123.Google Scholar
  12. 12.
    Mirkin, B.G., Problema gruppovogo vybora (The Problem of Group Choice), Moscow: Nauka, 1974.Google Scholar
  13. 13.
    Podinovskii, V.V., Metrological Requirements to the Accuracy of Coeficients of Importance of Factors in Generalized Indexes, in Abst. I vsesoyuz. sov. po statist. diskret. analizu nechislovoi inform. ekspertnym otsenkam i diskretnoi optimiz., Moscow: VINITI, 1981, pp. 142, 143.Google Scholar
  14. 14.
    Podinovskii, V.V. and Nogin, V.D., Pareto-optimal'nye resheniya mnogokriterial'nykh zadach (Pareto-Optimal Solutions of Multicriteria Problems), Moscow: Nauka, 1982.Google Scholar
  15. 15.
    Podinovskii, V.V., An Effective Estimate for Decision Rules in Multicriteria Problems, Tekhn. Kibern., 1987, no. 1, pp. 3–9.Google Scholar
  16. 16.
    Atanassopoulos, A.D. and Podinovski, V.V., Dominance and Potential Optimality in Multiple Criteria Decision Analysis with Imprecise Information, J. Oper. Res. Soc., 1997, vol. 48, pp. 142–150.Google Scholar
  17. 17.
    Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970. Translated under the title Vypuklyi analiz, Moscow: Mir, 1973.Google Scholar
  18. 18.
    Fishburn, P.C., Decision and Value Theory, New York: Wiley, 1964.Google Scholar
  19. 19.
    Anandalingam, G. and White, C.C., III, A Penalty Function Approach to Alternative Pairwise Comparisons in ISMAUT, IEEE Trans. Syst., Man, Cybernet., 1993, vol. 23, pp. 330–333.Google Scholar
  20. 20.
    Cook, W.D. and Johnston, D.A., Evaluating Suppliers of Complex Systems: A Multiple Criteria Approach, J. Oper. Res. Soc., 1992, vol. 43, pp. 1055–1061.Google Scholar
  21. 21.
    Hannan, E.L., Obtaining Nondominated Priority Vectors for Multiple Objective Decision Making Problems with Different Combinations of Cardinal and Ordinal Information, IEEE Trans. Syst., Man, Cybernet., 1981, vol. 8, pp. 538–543.Google Scholar
  22. 22.
    Moskowitz, H., Preckel, P.V., and Yang, A., Decision Analysis with Incomplete Utility and Probability Information, Oper. Res., 1993, vol. 41, pp. 864–879.Google Scholar
  23. 23.
    Kirkwood, C.W. and Corner, J.L., The Effectiveness of Partial Information about Attribute Weights for Ranking Alternatives in Multi-Attribute Decision Making, Organiz. Behavior Human Decision Proc.,1993, vol. 54, pp. 456–476.Google Scholar
  24. 24.
    Parkan, C., Decision Making under Partial Information, Eur. J. Oper. Res., 1994, vol. 79, pp. 115–122.Google Scholar
  25. 25.
    Parkan, C., Wang, L.-F., and Wu, M.-L., Decision Making under Partial Information using Pairwise Comparisons, Eur. J. Oper. Res., 1999, vol. 112, pp. 220–235.Google Scholar
  26. 26.
    Cook, W.D. and Kress, M., A Multiple Criteria Model with Ordinal Preference Data, Eur. J. Oper.Res., 1991, vol. 54, pp. 191–198.Google Scholar
  27. 27.
    Hazen, G.B., Partial Information, Dominance, and Potential Optimality in Multi-Attribute Utility Theory, Oper. Res., 1986, vol. 34, pp. 296–310.Google Scholar
  28. 28.
    Islam, R., Biswal, M.P., and Alam, S.S., Preference Programming and Inconsistent Interval Judgments, Eur. J. Oper. Res., 1997, vol. 97, pp. 53–62.Google Scholar
  29. 29.
    Shakhnov, I.F., A Model for Processing Pairwise Comparison Results for Objects defined in the form of Interval Estimates, Elektron. Tekh., Ser. Ekon. Sist. Upravlen., 1990, no. 4, pp. 33–39.Google Scholar
  30. 30.
    Podinovskii, V.V., Estimation of Importance Coeficients via Symmetric Lexicographic Optimization, Avtom. Telemekh., 2003, no. 3, pp. 150–162.Google Scholar
  31. 31.
    White, C.S., III, Sage, A.P., and Dozono, S., A Model of Multi-Attribute Decision Making and Trade-Offs Weights Determination under Uncertainty, IEEE Trans. Syst., Man, Cybernet., 1984, vol. 13, pp. 223–229.Google Scholar
  32. 32.
    Park, K.S. and Kim, S.H., Tools for Interactive Multi-Attribute Decision Making with Incompletely Identified Information, Eur. J. Oper. Res., 1997, vol. 98, pp. 111–123.Google Scholar
  33. 33.
    Weber, M., Decision Making with Incomplete Information, Eur. J. Oper. Res., 1987, vol. 28, pp. 44–57.Google Scholar
  34. 34.
    Fishburn, P.C., Analysis of Decisions with Incomplete Knowledge of Probabilities, Oper. Res., 1965, vol. 13, pp. 217–237.Google Scholar
  35. 35.
    Paelinck, J.H.P., Qualitative Multi-Criteria Analysis, Environmental Protection, and Multi-Regional Development, The European Meeting of the Regional Science Association, Budapest, August, 1975.Google Scholar
  36. 36.
    Claessens, M.N.A.J., Lootsma, F.A., and Vogt, F.J., An Elementary Proof of Poelinck's Theorem on the Convex Hull of Ranked Criterion Weights, Eur. J. Oper. Res., 1991, vol. 52, pp. 255–258.Google Scholar
  37. 37.
    Kirkwood, C.W. and Sarin, R.K., Ranking with Partial Information: A Method and an Application, Oper. Res., 1985, vol. 33, pp. 38–48.Google Scholar
  38. 38.
    Kmietowicz, Z.W. and Pearman, A.D., Decision Theory and Strict Ranking of Probabilities, Eur. J. Oper. Res., 1982, vol. 9, pp. 397–404.Google Scholar
  39. 39.
    Corrizosa, E., Conde, E., Fernandez, F.R., and Puerto, J., Multi-Criteria Analysis with Partial Information about Weight Coeficients, Eur. J. Oper. Res., 1995, vol. 81, pp. 291–301.Google Scholar
  40. 40.
    Rios Insua, D. and French, S., A Framework for Sensitivity Analysis in Discrete Multi-Objective Decision Making, Eur. J. Oper. Res., 1991, vol. 54, pp. 153–170.Google Scholar
  41. 41.
    Nogin, V.D., Optimal Decision and Multi-Objective Optimization, in Slozhnye Sistemy Upravleniya (Complex Control Systems), Kiev: Inst. Kibernetiki, 1977, pp. 22–31.Google Scholar
  42. 42.
    Eum, Y.S., Park, K.S., and Kim, S.H., Establishing Dominance and Potential Optimality in Multi-Criteria Analysis with Imprecise Weight and Value, Comput. Oper. Res., 2001, vol. 28, pp. 397–409.Google Scholar
  43. 43.
    Ozernoi, V.M. and Gaft, M.G., Construction of Decision Rules in Multi-Criteria Decision Making Problems, Problemy Prinyatiya Reshenii, 1974, vol.5, pp. 30–44.Google Scholar
  44. 44.
    Gaft, M.G. and Podinovskii, V.V., Decision Rules for Decision Making,Avtom. Telemekh., 1981, no. 6, pp. 128–138.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • V. V. Podinovskii
    • 1
  1. 1.State University, Higher School of EconomicsMoscowRussia

Personalised recommendations