Automation and Remote Control

, Volume 65, Issue 11, pp 1808–1816 | Cite as

Linear Aggregation of Information in Hierarchical Games

  • M. A. Gorelov


A model for a hierarchical system in which the principal has aggregated information on the actions of a lower-level agent is designed. The stability of computation of the maximal guaranteed result for the principal is studied.


Mechanical Engineer System Theory Hierarchical System Linear Aggregation Guarantee Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliev, V.S. and Kononenko, A.F., Collective Decision Making from Aggregated Information, Tes. dokl. Vsesoyuz. sov. po statist. diskret. analizu nechislovoi informatsii, ekspertnym otsenkam i diskretnoi optimizatsii, Moscow, 1981, pp. 324, 325.Google Scholar
  2. 2.
    Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Games with Nonantagonistic Interests), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Solutions of Ill-defined Problems), Moscow: Nauka, 1986.Google Scholar
  4. 4.
    Molodtsov, D.A., Ustoichivost' printsipov optimal'nosti (Stability of Optimality Principles), Moscow: Nauka, 1987.Google Scholar
  5. 5.
    Kukushkin, N.S. and Morozov, V.V., Teoriya neantagonisticheskikh igr (Theory of Nonantagonistic Games), Moscow: Mosk. Gos. Univ., 1984.Google Scholar
  6. 6.
    Kuratowsky, K., Topology, New York: Academic, 1966, vol. 1. Translated under the title Topol ogi ya, Moscow: Mir, 1966, vol. 1.Google Scholar
  7. 7.
    Gorelov, M.A., Design of Rational Procedures for Information Exchange in a Two-Player Hierarchical Game: A Parametric Formulation, Avtom. Telemekh., 2003, no. 9, pp. 103–112.Google Scholar
  8. 8.
    Gorelov, M.A., Design of Rational Procedures for Information Exchange in a Two-Player Hierarchical Game: A Set-Theoretic Formulation, Zh. Vychisl. Mat. Mat. Fiz., 2002, vol. 43, no. 3, pp. 376–387.Google Scholar
  9. 9.
    Kononenko, A.F., Mathematical Methods of Analysis of Dynamic Hierarchical Systems, Doctoral Dissertation, Moscow, 1978.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • M. A. Gorelov
    • 1
  1. 1.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations