Advertisement

Automation and Remote Control

, Volume 65, Issue 11, pp 1691–1709 | Cite as

Virtual Analyzers: Identification Approach

  • N. N. Bakhtadze
Article

Abstract

A definition of virtual analyzers as software algorithmic systems generating models in real time on the basis of current and retrospective information about the industrial processes was given. Methods of development of the virtual analyzers were presented, as well as examples of their industrial applications.

Keywords

Mechanical Engineer Industrial Application System Theory Industrial Process Identification Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Dubinin, V.A., Informatsionnyi menedzhment--fantom, obretayushchii plot' (Information Management is a Phantom Assuming Flesh), Moscow: Planeta KIS, 2001.Google Scholar
  2. 2.
    Kulikov, V.N., Strategy of Development of the Industrial Information Technologies, Mir Komp'yuternoi Avtomatizatsii, 2001, no. 4, pp. 12–15.Google Scholar
  3. 3.
    Afanas'ev, V.N. and Postnikov, A.I., Informatsionnye tekhnologii v upravlenii predpriyatiem (Information Technologies in Industrial Control), Moscow: MGIEM, 2003.Google Scholar
  4. 4.
    Hoske, M.T., How to Integrate Software, Control Engineering, 2000, no. 11.Google Scholar
  5. 5.
    Nesterova, A., MES--Industrial Control Systems. Make use of Evident Advantages, Mir Komp'yuternoi Avtomatizatsii, 2001, no. 4, pp. 24–26.Google Scholar
  6. 6.
    Musaev, A.A., Virtual Analyzers: The Concept of Design and Use in the Problems of Continuous Process Control, Avtomatiz. Promyshl., 2003, no. 8, pp. 28–33.Google Scholar
  7. 7.
    Harrold, D., Process Control's Latest Tool: Soft Sensors, Control Eng. Eur., June/July 2001, pp. 42–45.Google Scholar
  8. 8.
    Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol'zovatelya, Moscow: Nauka, 1991.Google Scholar
  9. 9.
    Sorkin, L.R., Achievements of the Trapeznikov Institute of Control Sciences in the Development and Introduction of the Information Control Technologies in the Oil and Gas System, in: Plenarnye dokl. Mezhdunar. konf. po problemam upravleniya (Int. Conf. on Control. Plenary Papers), Moscow: Inst. Probl. Upravlen., 1999, pp. 172–179.Google Scholar
  10. 10.
    Dozortsev, V.M., Kneller, D.V., and Levit, M.Yu., On Adequacy of the Process Simulators, in: Plenarnye dokl. Mezhdunar. konf. "Identifikatsiya sistem i zadachi upravleniya" (Pleanry Papers. Int. Conf. "System Identification and Control Problems"), Moscow: Inst. Probl. Upravlen., 2000.Google Scholar
  11. 11.
    Tumanov, N.A., Tumanov, D.N., Chadeev, V.M., and Bakhtadze, N.N., Virtual Analyzer-Based Control Systems for Production of Mineral Fertilizers, Avtomatiz. Promyshl., 2003, no. 8, pp. 33–36.Google Scholar
  12. 12.
    Osnovy upravleniya tekhnologicheskimi protsessami (Process Control Fundamentals), Raibman, N.C., Ed., Moscow: Nauka, 1978.Google Scholar
  13. 13.
    Tsypkinh, Ya.Z., Control of Dynamic Objects under Bounded Uncertainty, Izmereniya, Kontrol', Avtomatizatsiya, 1991, no. 3–4, pp. 3–21.Google Scholar
  14. 14.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob"ektami (Adaptive Control of Dynamic Objects), Moscow: Nauka, 1981.Google Scholar
  15. 15.
    Bartos, F.J., Artificial Intelligence: Smart Thinking for Complex Control, Control Eng., 1997, no. 7.Google Scholar
  16. 16.
    Zadeh, L.A., Fuzzy Sets and Applications, New York: Wiley, 1987.Google Scholar
  17. 17.
    Zadeh, L.A., Fuzzy Sets, Inform. Control, 1965, no. 6, pp. 338–353.Google Scholar
  18. 18.
    Zadeh, L.A., Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Trans. Syst. Man Cybernetics, 1973, no. 1, pp. 28–44.Google Scholar
  19. 19.
    Masalovich, A.I., Computer... Predicts, Softmarket, 1996, no. 23, pp. 6–9.Google Scholar
  20. 20.
    Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta (Fuzzy Sets in Models of Control and Atrificial Intelligence), Pospelov, D.A., Ed., Moscow: Nauka, 1986.Google Scholar
  21. 21.
    Kosko, B., Fuzzy Thinking, New York: Hyperion, 1992.Google Scholar
  22. 22.
    Kosko, B., Neural Networks and Fuzzy Systems. A Dynamic System Approach to Machine Intelligence, New Jercey: Prentice Hall, 1992.Google Scholar
  23. 23.
    Zemankova-Leech, M. and Kandel, A., Fuzzy Relational Data Bases: A Key to Expert Systems, Cologne: TUV Rheinland, 1984.Google Scholar
  24. 24.
    Karpenko, A.S., Multivalued Logics, Logika Komp'yuter, 1997, no. 4.Google Scholar
  25. 25.
    McNeill, D. and Freiberger, P., Fuzzy Logic, New York: Simon and Schuster, 1993.Google Scholar
  26. 26.
    Shtovba, S.D., Introduction to the Fuzzy Set Theory and Fuzzy Logic, in: Tez. dokl. Vseros. nauch. konf. "Proektirovanie nauchnykh and inzhenernykh prilozhenii v srede MATLAB" (Abstracts of Paper Russian Conf. "Design of Scientific and Engineering Applications in the MATLAB Environment"), Moscow: Inst. Probl. Upravlen., 2002.Google Scholar
  27. 27.
    Mamdani, E.H., Application of Fuzzy Algorithms for the Control of a Simple Dynamic Plant, Proc. IEEE, 1974, vol. 121, pp. 371–378.Google Scholar
  28. 28.
    Kutukov, S.E. and Vasil'ev, V.I., Elements of Artificial Intelligence in Systems of Collection, Preparation, and Transportation of Hydrocarbon Materials (http://www.ogbus.ru/authors/kutukov/kuts.pdf).Google Scholar
  29. 29.
    Gorban', A.N., Vozmozhnosti neironnykh setei. Neiroinformatika (Potentialities of the Neural Networks. Neural informatics), Novosibirsk: Nauka, 1998.Google Scholar
  30. 30.
    Blum, F., Leiserson, A., and Hofstedter L., A Brain, Mind and Behavior, Moscow: Mir, 1988, pp. 53–80.Google Scholar
  31. 31.
    Makhotilo, K.V., Analysis of Parametric Sensitivity of the Neural Network Control System, Tr. Mezhdunar. nauch.-tekh. konf. "MicroCAD'97," Inform. tekhnologii: nauka, tekhnika, tekhnologiya, obrazovanie, zdorov'e (Proc. Int. Conf. "microCAD'97," Information Technologies, Education, Health), Khar'kov: KHGPU, 1997, pp. 137–141.Google Scholar
  32. 32.
    Kashchavtsev, S., Personal Intelligence, Komp'yuterra, 2002, no. 20.Google Scholar
  33. 33.
    Galushkin, A.I., Current Directions of Development of the Neural Computer Technologies in Russia, Otkrytye Sistemy, 1997.Google Scholar
  34. 34.
    McCulloch, W.W. and Pitts, W., A Logical Calculus of the Ideas Imminent in Nervous Activity, Bulletin of Mathematical Biophysics, 1943, no. 5, pp. 115-33. Translated in Avtomaty, Shannon, C.E. and McCarthy, J.M., Eds., Moscow: Inostrannaya Literatura, 1956, pp. 362–384.Google Scholar
  35. 35.
    Rosenblatt, F., Principles of Neurodynamics, New York: Spartan Books, 1962. Translated under the title Printsipy neirodinamiki, Moscow: Mir, 1965.Google Scholar
  36. 36.
    Minsky, M. and Papert, S., Perceptrons, Cambridge: MIT Press, 1969. Translated under the title Perseptrony, Moscow: Mir, 1971.Google Scholar
  37. 37.
    Galushkin, A.I. and Logovskii, A.S., Neural Control: Basic Principles and Directions of Application of Neural Computers for Solution of Problems of Dynamic Plant Control, Dokl. Mezhdunar. konf. po problemam upravleniya (Proc. Int. Conf. on Control), Moscow: Inst. Probl. Upravlen., 1999.Google Scholar
  38. 38.
    Rumelhart, D.E., Hinton, G.E., and Williams, R.G., Learning Representation by Back-propagating Error, Nature, 1986, vol. 323, no. 6088, pp. 533–536.Google Scholar
  39. 39.
    Aved'yan, E.D., Barkan, G.V., and Levin, I.K., Cascaded Neural Networks, Avtom. Telemekh., 1999, no. 3, pp. 38–55.Google Scholar
  40. 40.
    Koposov, A.I., Shcherbakov, I.B., and Kislenko, N.A., Creating an Analytical Review of the Information Sources on Application of Neural Networks for Gas Technology. Research Report, Moscow: VNIIGAZ, 1995.Google Scholar
  41. 41.
    Hecht-Nilsen, R., Neurocomputing: Picking the Human Brain, IEEE Spectrum, 1998, vol. 25, no. 3, pp. 36–41.Google Scholar
  42. 42.
    Holland, J., Adaptation in Natural and Artificial Systems. Adaptation in Natural and Artificial Systems, Ann Arbor: Univ. Michigan, 1992.Google Scholar
  43. 43.
    Booker, L.B., Goldberg, D.E., and Holland, J.H., Classifier Systems and Genetic Algorithms, Artificial Intelligence, 1989, vol. 40, no. 2, pp. 235–282.Google Scholar
  44. 44.
    Goldberg, D., Genetic Algorithms in Machine Learning, Optimization and Search, Massachusetts: Addison-Wesley, 1989.Google Scholar
  45. 45.
    Jones, A.J., Genetic Algorithms and Their Applications to the Design of Neural Network, Neural Computing Applications, 1993, vol. 1, no. 1.Google Scholar
  46. 46.
    Bunich, A.L. and Bakhtadze, N.N., Sintez i primenenie adaptivnykh sistem s identifikatorom (Design and Use of Adaptive Systems with Identifier), Moscow: Nauka, 2003.Google Scholar
  47. 47.
    Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Uncertainty), Moscow: Nauka, 1977.Google Scholar
  48. 48.
    Chernous'ko, F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov (Estimation of the Phase State of Dynamic Control. Ellipsoid method), Moscow: Nauka, 1988.Google Scholar
  49. 49.
    Tsypkinh, Ya.Z., Informatsionnaya teoriya identifikatsii (Information Theory of Identification), Moscow: Nauka, 1995.Google Scholar
  50. 50.
    Soderstrom, T. and Stoica, P., Variable Methods for System Identification New York: Springer, 1983.Google Scholar
  51. 51.
    Tertychnyi, V.Yu., Stokhasticheskaya mekhanika (Stochastic Mechanics), Moscow: Faktorial Press, 2001.Google Scholar
  52. 52.
    Grigor'ev, F.N., Kuznetsov, N.A., and Serebrovskii, A.P., Upravlenie nablyudeniyami v avtomaticheskikh sistemakh (Control of Observations in Automatic Systems), Moscow: Nauka, 1986.Google Scholar
  53. 53.
    Krasovskii, A.A., Historical Review and State-of-the-Art of the Fundamental Applied Science of Control as Exemplified by the Self-organizing Controllers, Plenarnye dokl. Mezhdunar. konf. po problemam upravleniya (Int. Conf. on Control, Plenary Papers), Moscow: Inst. Probl. Upravlen., 1999, pp. 4–23.Google Scholar
  54. 54.
    Polyak, B.T., Trudy Inst. Probl. Upravlen., 1999, vol. 5, pp. 36–41.Google Scholar
  55. 55.
    Semenov, A.V., Osnovy H∞-teorii upravleniya. Kurs lektsii (Fundamentals of the H∞-theory of Control. Lectures), Moscow: GOSNIIAS, 1992.Google Scholar
  56. 56.
    Andronov, A.A. and Pontryagin, L.S., Rough Systems, Dokl. Akad. Nauk SSSR, 1937, vol. 14, no. 5, pp. 247–249.Google Scholar
  57. 57.
    Huber, P.J., Robust Statistics, New York: Wiley, 1981. Translated under the title Robastnost' v statistike, Moscow: Mir, 1984.Google Scholar
  58. 58.
    Tsypkin, Ya.Z. and Polyak, B.T., Robust Stability of Linear Discrete Systems, Dokl. Akad. Nauk SSSR, 1991, vol. 316, no. 4, pp. 842–846.Google Scholar
  59. 59.
    Tsypkin, Ya.Z., Robustness in System of Control and Data Processing, Avtom. Telemekh., 1992, no. 1, pp. 165–169.Google Scholar
  60. 60.
    Dzhuri, E., Robustness of Discrete Systems, Avtom. Telemekh., 1990, no. 5, pp. 3–28.Google Scholar
  61. 61.
    Tsypkin, Ya.Z. and Polyak, B.T., Frequency Methods of Robust Stability of Linear Discrete Systems, Avtomatika, 1990, no. 4, pp. 3–9.Google Scholar
  62. 62.
    Polyak, B.T. and Tsypkin, Ya.Z., Frequency Methods of Robust Stability and Aperiodicity of Linear Systems, Avtom. Telemekh., 1990, no. 9, pp. 45–54.Google Scholar
  63. 63.
    Tsypkin, Ya.Z., Stochastic Discrete Systems with Internal Models, Probl. Upravlen. Inf., 1996, no. 12, pp. 21–25.Google Scholar
  64. 64.
    Kurdyukov, A.P., Osnovy robastnogo upravleniya (Fundamentals of Robust Control), Moscow: Mosk. Gos. Tekhn. Univ., 1995.Google Scholar
  65. 65.
    Petrov, B.I., Rutkovskii, V.Yu., and Zemlyakov, S.D., Adaptivnoe koordinatno-parametricheskoe upravlenie nestatsionarnymi ob"ektami (Adaptive Coordinate-Parametric Control of Nonstationary Objects), Moscow: Nauka, 1980Google Scholar
  66. 66.
    Zemlyakov, S.D. and Rutkovskii, V.Yu., Adaptation Algorithms and Conditions for Operability of the Self-adjusting Control System of a Multivariable Plant with Variable Parameters, Avtom. Telemekh., 1981, no. 1, pp. 65–73.Google Scholar
  67. 67.
    Pavlov, B.V., Structural Design of the Main Loop of Searchless Self-adjusting Systems, Avtom. Telemekh., 1977, no. 12, pp. 56–64.Google Scholar
  68. 68.
    Yadykin, I.B., Shumskii, V.M., and Ovsepyan, F.A., Adaptivnoe upravlenie nepreryvnymi tekhnologich-eskimi protsessami (Adaptive Control of Continuous Processes), Moscow: Energoatomizdat, 1985.Google Scholar
  69. 69.
    Bukov, V.N., Adaptivnye prognoziruyushchie sistemy upravleniya poletom (Adaptive Predicting Flight Control Systems), Moscow: Nauka, 1987.Google Scholar
  70. 70.
    Afanas'ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Control System Design), Moscow: Vysshaya Shkola, 2003.Google Scholar
  71. 71.
    Derevitskii, D.P. and Fradkov, A.L., Prikladnaya teoriya diskretnykh adaptivnykh sistem upravleniya (Applied Theory of Discrete Adaptive Control Systems), Moscow: Nauka, 1981.Google Scholar
  72. 72.
    Nazin, A.V., Adaptivnyi vybor variantov: Rekkurentnye algoritmy (Adaptive Choice of Variants: Recurrent Algorithms), Moscow: Nauka, 1986.Google Scholar
  73. 73.
    Kurdyukov, A.P., Design of Optimal Robust Controllers under Disturbances, in: Metody klassicheskoi i sovremennoi teorii upravleniya (Methods of the Classical and Modern Control Theory), Moscow: Mosk. Gos. Tekhn. Univ., 2000.Google Scholar
  74. 74.
    Doyle, J., Analysis of Feedback Systems with Strustured Uncertainties, IEEE Proc., 1982, vol. 129, part D, no. 6.Google Scholar
  75. 75.
    Stein, G. and Doyle, J., Beyond Singular Values and Loop Shapes, J. Guidance, 1991, vol. 14, no. 1.Google Scholar
  76. 76.
    Packard, A. and Doyle, J., The Complex Structured Singular Value, Automatica, 1993, vol. 29, no. 1.Google Scholar
  77. 77.
    Packard, A. and Doyle, J., Quadratic Stability with Real and Complex Perturbations, IEEE Trans. Automat. Control, vol. 35, no. 2.Google Scholar
  78. 78.
    Lu, W.M., Zhou, K., and Doyle J., Stabilization of LFTnsystems, Proc. 30 CDC, Brihton, 1991.Google Scholar
  79. 79.
    Vidyasagar, M., Optimal Rejection of Persistent Bounded Disturbances, IEEE Trans. Automat. Control, 1986, vol. 31, pp. 527–534.Google Scholar
  80. 80.
    Khammash, M. and Pearson, J.B., Perfomance Robustness of Discrete-time Systems with Structured Uncertainty, IEEE Trans. Automat. Control, 1991, vol. 36, no. 4.Google Scholar
  81. 81.
    Dahleh, M.A. and Khammash, M.H., Controller Design for Plants with Structured Uncertainty, Automatica, 1993, vol. 29, no. 1.Google Scholar
  82. 82.
    Chappelat, H. and Bhattacharya, S.P., A Generalization of Kharitonov's Theorem: Robust Stability of Interval Plants, IEEE Trans. Automat. Control, 1989, vol. 34, no. 3.Google Scholar
  83. 83.
    Hollot, C.V. and Yang, F., Robust Stabilization of Interval Plants Using Lead or Lag Compensators, Syst. Control. Lett., 1990, vol. 14, no. 1.Google Scholar
  84. 84.
    Petersen, I.R., A New Extention of Kharitonov's Theorem, IEEE Trans. Automat. Control, 1990, vol. 35, no. 7.Google Scholar
  85. 85.
    Barmish, B.R. and Kang, H.I., Extreme Point Results for Robust Stability of Interval Plants: Beyond First Order Compensators, Proc. FirstIFACSymp. OnDes. Meth.Control Sys., ETH, Zurich, 1991, vol. 1, pp. 1–16.Google Scholar
  86. 86.
    Semyonov, A.V., Vladimirov, I.G., and Kurdjukov, A.P., Stochastic Approach to H∞-optimization, Proc. 33rd Conf. Decision and Control, Florida, vol. 3, 1994.Google Scholar
  87. 87.
    Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., Stochastic Problem of H∞-optimization, Dokl. Ross. Akad. Nauk, 1995, no. 5, pp. 343–350.Google Scholar
  88. 88.
    Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., Asymptotics of the Anisotropic Norm of Linear Stationary Systems, Avtom. Telemekh., 1999, no. 3, pp. 78–87.Google Scholar
  89. 89.
    Polyak, B.T. and Kiselev, O.N., Design of Low-order Controllers by the H∞-Criterion and the Criterion for Maximum Robustness, Avtom. Telemekh., 1999, no. 3, pp. 119–130.Google Scholar
  90. 90.
    Tsypkin, Ya.Z., Design of Robust-optimal Plant Control Systems under Bounded Uncertainty, Avtom. Telemekh., 1992, no. 9, pp. 139–159.Google Scholar
  91. 91.
    Tsypkin, Ya.Z., Robust-optimal Discrete Control Systems, Avtom. Telemekh., 1999, no. 3, pp. 25–37.Google Scholar
  92. 92.
    Barabanov, A.E. and Granichin, O.N., Optimal Controller of a Linear Plant with Bounded Noise, Avtom. Telemekh., 1984, no. 5, pp. 39–46.Google Scholar
  93. 93.
    http://www.umich.edu/flash.htmlGoogle Scholar
  94. 94.
    Bakhtadze, N.N., Lototskii, V.A., and Fayans, M.A., Identification Approach to Investment Planning, Tr. Mezhdunar. konf. "Identifikatsiya sistem i zadachi upravleniya" (Proc. Int. Conf. "System Identification and Problems of Control"), Moscow: Inst. Probl. Upravlen., 2000, pp. 9–14.Google Scholar
  95. 95.
    Bakhtadze, N.N. and Nazin, A.V., Virtual Analyzer in the Systems of Company Debt Management, Tez. dokl. 2-i Mezhdunar. konf. po problemam upravleniya (Second Int. Control Conf.), Moscow: Inst. Probl. Upravlen., vol. 2, p. 4, 2003.Google Scholar
  96. 96.
    Lototskii, V.A. and Mandel', A.S., Modeli i metody upravleniya zapasami (Models and Methods of Inventory Control), Moscow: Nauka, 1991.Google Scholar
  97. 97.
    Bobrovskii, S.A., Outlooks and Tendencies of Artificial Intelligence, PC Week/RE, 2001, no. 32, p. 32.Google Scholar
  98. 98.
    Masterenko, D.A., Recurrent Robust Estimation in Computerized Information-and-Measurement Systems, Tez. dokl. nauchno-tekhn. konf. "Sostoyanie i problemy tekhnicheskikh izmerenii" (Second Conf. "State-of-the-Art and Problems of Technical Measurements"), Moscow: Mosk. Gos. Tekhn. Univ., 1995.Google Scholar
  99. 99.
    Gorbunov, A.R., Upravlenie finansovymi potokami (Management of Financial Flows), Moscow: Toratsentr, 2003.Google Scholar
  100. 100.
    Kardash, V.A., Modeli upravleniya proizvodstvenno-ekonomicheskimi protsessami v sel'skom khozyaistve (Models of Control of Production and Economics in Agriculture), Moscow: Ekonomika, 1981.Google Scholar
  101. 101.
    Prokopchina, S.V., Bayes Integrating Technologies based on Intelligent and Soft Measurements, in Dokl. konf. SCM'99 (Proc. Conf. SCM'99), St. Petersburg, 1999, pp. 25–32.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • N. N. Bakhtadze
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations