Skip to main content
Log in

Programmable Ferromagnet-Semiconductor Logic Devices

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The scopes for creating new programmable logic magnetoelectronics-based elements were reviewed. The functions of programmable logic were shown to be realizable by the Hall elements, spin-gate and spin-tunneling magnetoresistance elements, and magnetic nanodots combined with relatively simple semiconductor circuits. By means of magnetic programming of the basic logic functions, they can be realized like programmable logic constructions using magnetic devices as nonvolatile programmable elements or like matrices of universal logic elements. Ability to save program information and input data and to convert in one cycle the set of logic configurations are the main advantages of the discussed magnetic and ferromagnet-semiconductor logic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Johnson, M., Hybrid Ferromagnet-Semiconductor Device for Memory and Logic, IEEE Trans. Mag., 2000, vol. 23, no. 3, pp. 2758–2763.

    Google Scholar 

  2. Kasatkin, S.I., Vasil'eva, N.P., and Murav'ev, A.M, Mnogosloinye tonkoplenochnye magnitorezistivnye elementy (Multilayer Thin-lm Magnetoresistance Elements), Tula: Grif, 2001.

    Google Scholar 

  3. Vasil'eva, N.P., Kasatkin, S.I., and Murav'ev, A.M., Elements of Magnetic Spintronics, Datchiki Sistemy, 2003, no. 1, pp. 48–59.

    Google Scholar 

  4. Johnson, M., Magnetoelectronic Memories Last and Last, IEEE Spectrum Mag., 2000, vol. 37, p. 33.

    Google Scholar 

  5. Vasil'eva, N.P. and Kasatkin, S.I., Magnetoresistor Random-access Memories, Avtom. Telemekh., 2003, no. 9, pp. 3–23.

    Google Scholar 

  6. Johnson, M., Bennett, B., Hammar, P., and Miller, M., Magnetoelectronic Latching Boolean Gate, Solid-State Electronics, 2000, vol. 44, pp. 1099–1104.

    Google Scholar 

  7. Johnson, M., Bennett, B., et al., Hybrid Hall Effect Device, Appl. Phys Lett., 2001, vol. 71, p. 974.

    Google Scholar 

  8. Johnson, M., Bennett, B., Yang, M., et al., Hybrid Ferromagnet-Semiconductor Nonvolatile Gates, IEEE Trans. Mag., 1998, vol. 34, p. 1054.

    Google Scholar 

  9. Stankiewiez, A., Hiebert, W., et al., Dynamics of Magnetization Reversal in a 20 _ 4 _m Permalloy Microstructure, IEEE Trans. Mag., 1998, vol. 34, p. 1003.

    Google Scholar 

  10. Das, B. and Black, W., Programmable Logic Using Giant-magnetoresistance and Spin-dependent Tunneling Devices, J. Appl. Phys., 2000, vol. 87, no. 9, pp. 6671–6679.

    Google Scholar 

  11. Richter, R., Boeve, H., et al., Field Programmable Spin-logic Based on Magnetic Tunnelling Elements, JMMM, 2002, vol. 240, pp. 127–129.

    Google Scholar 

  12. Richter, R., Boeve, H., Bar, L., et al., Field Programmable Spin-logic Realized with Tunnellingmagnetoresistance Devices, Solid-State Electronics, 2002, vol. 46, pp. 639–641.

    Google Scholar 

  13. Hassoun, M., Black, W., Lee, E., et al., Field Programmable Logic Gates using GMR Devices, IEEE Trans. Magn., 1997, vol. 33, no. 5, pp. 3307–3309.

    Google Scholar 

  14. Vasil'eva, N.P. and Kasatkin, S.I., Possibility of Designing Logic Elements Based on Spin-gate Magnetoresistance Structures, Mikroelektronika, 1997, vol. 26, no. 6, pp. 470–476.

    Google Scholar 

  15. Ney, A., Pampuch, C., Koch, R., and Ploog, K.H., Programmable Computing with a Single Magnetoresistive Element, Nature, 2003, vol. 425, pp. 485–487.

    Google Scholar 

  16. Das, B. and Black, W.C., A Generalized HSPICE Macro-model for Pinned Spin-dependent-tunneling Devices, IEEE Trans. Magn., 1999, vol. 35, no. 5, pp. 2889–2891.

    Google Scholar 

  17. Prinz, G.A., Magnetoelectronics Applications, JMMM, 1999, vol. 200, pp. 57.

    Google Scholar 

  18. Amlani, I., Orlov, A.O., Toht, G., et al., Digital Logic Gate Using Quantum-Dot Cullucar Automata, Science, 1999, vol. 284, p. 289.

    Google Scholar 

  19. Cowburn, R.P. and Welland, M.E., Room Temperature Magnetic Quantum Cellular Automata, Science, 2000, no. 287, pp. 1466–1468.

  20. Cowburn, R.P., Magnetic Nanodots for Device Applications, JMMM, 2002, vol. 242–245, pp. 505–511.

    Google Scholar 

  21. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., et al., Single Domain Circular Nanomagnets, Phys. Rev. Lett., 1999, no. 83, p. 1042.

  22. Cowburn, R.P., Property Variation with Shape in Magnetic Nanoelements, J. Phys. D, 2000, no. 33, R1–R16.

  23. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., et al., Probing Submicron Nanomagnets by Magnetooptics, Appl. Phys. Lett., 1998, no. 73, p. 3947.

    Google Scholar 

  24. Allwood, D.A., Xiong Gang, Cooke, M.D., et al., Submicrometer Ferromagnetic NOT Gate and Shift Register, Science, 2002, no. 296, pp. 2003–2006.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil'eva, N.P., Kasatkin, S.I. & Petrukhin, B.P. Programmable Ferromagnet-Semiconductor Logic Devices. Automation and Remote Control 65, 1357–1376 (2004). https://doi.org/10.1023/B:AURC.0000041416.32126.67

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AURC.0000041416.32126.67

Keywords

Navigation