Annals of Global Analysis and Geometry

, Volume 26, Issue 3, pp 315–318 | Cite as

A Note on the Moment Map on Compact Kähler Manifolds

  • Anna Gori
  • Fabio Podestà


We consider compact Kähler manifolds acted on effectively by a connected compact Lie group K of isometries in a Hamiltonian fashion. We prove that the squared moment map ||μ||2 is constant if and only if K is semisimple and the manifold is biholomorphically and K-equivariantly isometric to a product of a flag manifold and a compact Kähler manifold which is acted on trivially by K.

Kähler manifolds moment mapping flag manifolds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besse, A. L.: Einstein Manifolds, Springer Verlag (1978).Google Scholar
  2. 2.
    Huckleberry, A. T. and Wurzbacher, T.: Multiplicity-free complex manifolds, Math. Ann. 286(1990), 261–280.Google Scholar
  3. 3.
    Guillemin, V. and Sternberg, S.: Symplectic Techniques in Physics, Cambridge University Press, 1984.Google Scholar
  4. 4.
    Kirwan, F.: Cohomology of quotiens in symplectic and algebraic geometry, Math. Notes 31(1984).Google Scholar
  5. 5.
    Gori, A. and Podest` a, F.: Two orbits Kähler manifolds and Morse theory, Preprint, 2003 to appear in Monatshefte f ¨ ur Math.Google Scholar
  6. 6.
    Kirwan, F.: Convexity properties of the moment mapping III, 77(1984), 547–552.Google Scholar
  7. 7.
    De Siebenthal, J.: Sur certains modules dans une alg´ ebre de Lie semisimple, Comment. Math. Helv. 44(1964), 1–44.Google Scholar
  8. 8.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry.Vol. II, Wiley, New York, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Anna Gori
  • Fabio Podestà

There are no affiliations available

Personalised recommendations