Annals of Global Analysis and Geometry

, Volume 26, Issue 3, pp 209–229 | Cite as

Surgery, Curvature, and Minimal Volume

  • Chanyoung Sung


On a Riemannian manifold X, we consider aK+s, where a is a nonnegative constant, K is the sectional curvature and s is the scalar curvature. It is shown that if X admits a metric with aK+s > 0, then so does any manifold obtained from X by surgeries of codimension ≥3. This implies the existence of such metrics on certain compact simply connected manifolds of dimension ≥5 by using the cobordism argument. We also study the corresponding minimal volume problem. As a corollary, we derive that every compact simply connected manifold of dimension ≥5 and every compact complex surface of Kodaira dimension ≤1 whose minimal model is not of Class VII collapse with aK+s bounded below.

surgery curvature minimal volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Peters, C. and Van De Ven, A.: Compact Complex Surfaces, Springer-Verlag, Berlin, 1982.Google Scholar
  2. 2.
    Besse, A.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.Google Scholar
  3. 3.
    Donaldson, S. K.: Connection, cohomology and the intersection forms of 4-manifolds, J. Differential Geom. 24(1986), 275–341.Google Scholar
  4. 4.
    Freedman, M.: On the topology of 4-manifolds, J. Differential Geom. 17(1982), 357–454.Google Scholar
  5. 5.
    Gompf, R. and Stipsicz, A.: 4-Manifolds and Kirby Calculus, Amer. Math. Soc. Providence, 1999.Google Scholar
  6. 6.
    Gromov, M. and Lawson, H. B.: The classification of simply connected manifolds of positive scalar curvature, Ann. Math. 111(1980), 423–434.Google Scholar
  7. 7.
    Hitchin, N.: Harmonic spinors, Adv. Math. 14(1974), 1–55.Google Scholar
  8. 8.
    Joyce, D.: Compact 8-manifolds with Holonomy Spin(7), Invent. Math. 123(1996), 507–552.Google Scholar
  9. 9.
    Lawson, H. B. and Michelson, M. L.: Spin Geometry, Princeton University Press, Princeton, 1987.Google Scholar
  10. 10.
    LeBrun, C.: Four-manifolds without Einstein metric, Math. Res. Lett. 3(1996), 133–147.Google Scholar
  11. 11.
    LeBrun, C.: Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7(1999), 133–156.Google Scholar
  12. 12.
    LeBrun, C.: Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent. Math. 145(2001), 279–316.Google Scholar
  13. 13.
    Lichnerowicz, A.: Spineurs harmoniques, C.R. Acad. Aci. Paris Ser. A-B 257(1963), 7–9.Google Scholar
  14. 14.
    Paternain, G. P. and Petean, J.: Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151(2003), 415–450.Google Scholar
  15. 15.
    Petean, J.: Computations of the Yamabe invariant, Math. Res. Lett. 5(1998), 703–709.Google Scholar
  16. 16.
    Petean, J.: The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523(2000), 225–231.Google Scholar
  17. 17.
    Petersen, P.: Riemannian Geometry, Springer-Verlag, Berlin, 1998.Google Scholar
  18. 18.
    Rosenberg, J.: C-algebra, positive scalar curvature, and the Novikov conjecture III, Topology 25(1986), 319–336.Google Scholar
  19. 19.
    Schoen, R. and Yau, S. T.: On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28(1979), 159–183.Google Scholar
  20. 20.
    Stolz, S.: Simply connected manifolds of positive scalar curvature, Ann. Math. 136(1992), 511–540.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Chanyoung Sung

There are no affiliations available

Personalised recommendations