Advertisement

Annals of Global Analysis and Geometry

, Volume 26, Issue 2, pp 107–116 | Cite as

Compact Almost Kähler Manifolds with Divergence-Free Weyl Conformal Tensor

  • Hiroyasu Satoh
Article
  • 82 Downloads

Abstract

We prove that a compact almost Kähler manifold satisfying that a certain part of thedivergence δW of the Weyl conformal tensor W vanishes isKähler.

almost Kähler manifold Kähler manifold Weyl conformal tensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbena, E.: An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. 3A (1984), 38–392.Google Scholar
  2. 2.
    Apostolov, V. and Armstrong, J.: Symplectic 4-manifolds with Hermitian Weyl tensor, Trans. Amer. Math. Soc. 352 (2000), 450–4513.Google Scholar
  3. 3.
    Apostolov, V., Armstrong, J. and Drăghici, T.: Local rigidity of certain classes of almost Kähler 4-manifolds, Ann. Global Anal. Geom. 21 (2002), 15–176.Google Scholar
  4. 4.
    Apostolov, V. and Drăghici, T.: Almost Kähler 4-manifolds with J-invariant Ricci tensor and special Weyl tensor, Quart. J. Math. 51 (2000), 27–294.Google Scholar
  5. 5.
    Besse, A. L.: Einstein Manifolds, Springer, Berlin, 1987.Google Scholar
  6. 6.
    Cordero, A. L., Fernandez, M. and Gray, A.: Symplectic manifolds with no Kähler structure, Topology 25 (1986), 37–380.Google Scholar
  7. 7.
    Cordero, A. L., Fernandez, M. and de Leon, M.: Examples of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc. 95 (1985), 28–286.Google Scholar
  8. 8.
    Drăghici, T. C.: On the almost Kähler manifolds with Hermitian Ricci tensor, Houston J. Math. 20 (1994), 29–298.Google Scholar
  9. 9.
    Drăghici, T. C.: Almost Kähler 4-manifolds with J-invariant Ricci tensor, Houston J. Math. 25 (1999), 13–145.Google Scholar
  10. 10.
    Jelonek, W.: Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 63–649.Google Scholar
  11. 11.
    Lopera, J. F. T.: A family of constant non-Kähler manifolds which admit semi-Kähler or almost-Kähler structures, Boll. Un. Mat. Ital. 5A (1986), 35–360.Google Scholar
  12. 12.
    Murakoshi, N., Oguro, T. and Sekigawa, K.: Four-dimensional almost Kähler locally symmetric spaces, Differential Geom. Appl. 6 (1996), 23–244.Google Scholar
  13. 13.
    Oguro, T.: Examples of non-Kähler almost Kähler symmetric spaces, C. R. Math. Rep. Acad. Sci. Canada 18 (1996), 24–246.Google Scholar
  14. 14.
    Oguro, T.: On some compact almost Kähler locally symmetric space, Internat. J. Math. Math. Sci. 21 (1998), 6–72.Google Scholar
  15. 15.
    Oguro, T. and Sekigawa, K.: Four dimensional almost Kähler Einstein and *-Einstein manifolds, Geom. Dedicata 69 (1998), 9–112.Google Scholar
  16. 16.
    Oguro, T. and Sekigawa, K.: On some four-dimensional almost Kähler Einstein manifolds, Kodai Math. J. 24 (2001), 22–258.Google Scholar
  17. 17.
    Oguro, T., Sekigawa, K. and Yamada, A.: Four-dimensional almost Kähler Einstein and weakly *-Einstein manifolds, Yokohama Math. J. 47 (1999), 7–92.Google Scholar
  18. 18.
    Sato, T.: An example of an almost Kähler manifold with pointwise constant holomorphic sectional curvature, Tokyo J. Math. 23 (2000), 38–401.Google Scholar
  19. 19.
    Sekigawa, K.: On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann. 271 (1985), 33–337.Google Scholar
  20. 20.
    Sekigawa, K.: On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 67–684.Google Scholar
  21. 21.
    Thurston, W. P.: Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 46–468.Google Scholar
  22. 22.
    Watson, B.: New examples of strictly almost Kähler manifolds, Proc. Amer. Math. Soc. 88 (1983), 54–544.Google Scholar
  23. 23.
    Yano, K.: Differential Geometry on Complex and Almost Complex Spaces, Pergamon, New York, 1965.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hiroyasu Satoh
    • 1
  1. 1.Graduate School of MathematicsUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations