Skip to main content
Log in

Generalised Einstein Equations and Prescribed Relations for the First Chern Weil Form

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Generalised Einstein equations (Einstein equations with sources in thephysicist's grammar) can, in the Kähler setup, be seen ascohomological equations within the first Chern class. Introducing a twoparameter secondary class (or source term) to prescribe such acohomological relation, we characterise regions and paths of thoseparameters to ensure that the associated equation admits at least onesolution. Those regions could be seen, in the context of geometricanalysis, as a measure of the metric flexibility allowed within theKählerian rigidity. When the first Chern class is positive, the AubinTian constant and the bounds for the pluriharmonic concavity andconvexity of the source term characterise the bounds of that region.Taking into account the minimal regularity of the secondary class toensure the existence of classical solutions, we observe, in particular,an improvement of some results quoted in the literature in the contextof Calabi's conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Non Linear Analysis on Manifolds, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  2. Aubin, T.: Réduction du cas positif de l'équation de Monge Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal. 57(1984), 143–153.

    Google Scholar 

  3. Aubin, T.: Some Non Linear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  4. Bando, S. and Mabuchi, T.: Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions, Adv. Stud. Pure Math. 10, Academic Press, Boston, MA, 1987; Algebraic Geometry, Sendai, 1985, pp. 11–40.

    Google Scholar 

  5. Ben Abdesselem, A.: Equations de Monge Ampère d'origine géométrique sur certaines variétés algébriques, J. Funct. Anal. 149(1997), 102–134.

    Google Scholar 

  6. Bérard, P., Besson, G. and Gallot, S.: Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov, Invent. Math. 80(1985), 295–308.

    Google Scholar 

  7. Bourguignon, J.-P. (ed.): Première classe de Chern et courboure de Ricci: Preuve de la conjecture de Calabi, Séminaire Palaiseau, Astérisque 58(1978).

  8. Bourguignon, J.-P.: Métriques d'Einstein Kähler sur les variétés de Fano: Obstructions et existence, Sém. Bourbaki 830(1997), 277–305.

    Google Scholar 

  9. Cabré, X. and Caffarelli, L.: Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  10. Cheng, S. Y. and Li, P.: Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56(1981), 327–338.

    Google Scholar 

  11. Delanoë, P.: Equations du type de Monge Ampère sur les variétés Riemanniennes compactes, II, J. Funct. Anal. 41(1981), 341–353.

    Google Scholar 

  12. Demailly, J.-P.: Méthodes L 2et résultats effectifs en géométrie algébrique, Sém. Bourbaki 852(1998), 59–90.

    Google Scholar 

  13. Demailly, J.-P. and Kollár, J.: Semi-continuity of complex singularity exponents and Kähler Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. 34(2001), 525–556.

    Google Scholar 

  14. Do Carmo, M. P.: Riemannian Geometry, Birkhäuser, Boston, MA, 1992.

    Google Scholar 

  15. Donaldson, S. K.: Scalar curvature and projective embeddings, I, J. Differential Geom. 59(2001), 479–522.

    Google Scholar 

  16. Evans, L.: Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math. 27(1982), 333–363.

    Google Scholar 

  17. Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  18. Futaki, A.: Kähler Einstein Metrics and Integral Invariants, Lecture Notes Math. 1314, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  19. Gilbarg, D. and Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  20. Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978.

    Google Scholar 

  21. Gromov, M.: Spaces and Questions, GAFA, Special Volume (2000), 118–161.

  22. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn., North Holland, Amsterdam, 1990.

    Google Scholar 

  23. Kolodziej, S.: The complex Monge Ampère equation, Acta Math. 180(1998), 69–117.

    Google Scholar 

  24. Matsushima, Y.: Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété Kählérienne, Nagoya Math. J. 11(1957), 145–150.

    Google Scholar 

  25. Micallef, M. and Moore, J. D.: Minimal two spheres and the topology of manifolds with positive curvature on totally isotropic two planes, Annals of Math. 127(1988), 199–227.

    Google Scholar 

  26. Motzkin, T. and Wascow, W.: On the approximations of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Phys. 31(1952), 253–259.

    Google Scholar 

  27. Pons, D.: Generalised Einstein equations on Kähler manifolds, Ph.D. Thesis, University of London (Imperial College), 2002.

  28. Real, C.: Métriques d'Einstein Kähler et exponentiel des fonctions admissibles, J. Funct. Anal. 88(1990), 385–394.

    Google Scholar 

  29. Siu, Y. T.: Lectures on Hermitian–Einstein Metrics for Stable Bundles and Kähler Einstein Metrics, Birkhäuser, Boston, MA, 1987.

    Google Scholar 

  30. Tian, G.: Kähler Einstein metrics with positive scalar curvature, Invent.Math. 137(1997), 1–37.

    Google Scholar 

  31. Tian, G.: On Kähler Einstein metrics on certain Kähler manifolds with c 1 >0, Invent. Math. 89(1987), 225–246.

    Google Scholar 

  32. Tian, G.: Canonical Metrics on Kähler Geometry, Birkhäuser, Boston, MA, 2000.

    Google Scholar 

  33. Yau, S. T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge Ampère equation, Comm. Pure Appl. Math. 31(1978), 339–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pons, D. Generalised Einstein Equations and Prescribed Relations for the First Chern Weil Form. Annals of Global Analysis and Geometry 25, 177–200 (2004). https://doi.org/10.1023/B:AGAG.0000018557.28153.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGAG.0000018557.28153.ff

Navigation