Skip to main content
Log in

Mapping Properties of the Laplacian in Sobolev Spaces of Forms on Complete Hyperbolic Manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

For a complete manifold M with constant negative curvature, weprove that the rough Laplacian Δ R defines topological isomorphisms in the scale of Sobolev spaces H p s(M) ofp-forms for all p, 0 < p< n. For the de Rham LaplacianΔ and M=ℍn, the Poincaréhyperbolic space, this is shown too for 0 ≤pn,pn/2, p≠ (n± 1)/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  2. Aubin, T.: Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. 100(1976) 149–173.

    Google Scholar 

  3. Bruna, J.: Green forms for the de Rham Laplacian and L p-estimates for Riesz transforms in the Poincaré space Hn, Preprint, Departament de Matemàtiques de la UAB, 2002.

  4. Bruna, L. and Girbau, J.: Linearization stability of the Einstein equation for Robertson–Walker models I, J. Math. Phys. 40(1999), 5117–5130.

    Google Scholar 

  5. Bruna, L. and Girbau, J.: Linearization stability of the Einstein equation for Robertson–Walker models II, J. Math. Phys. 40(1999), 5131–5137.

    Google Scholar 

  6. Benedetti, R. and Petronio, C.: Lectures on Hyperbolic Geometry. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  7. Cantor, M.: Spaces of functions with asymptotic conditions on Rn, Indiana Univ. Math. J. 24(1975), 897–902.

    Google Scholar 

  8. Cantor, M.: Some problems in global analysis on asymtotically simple manifolds, Compositio Math. 38(1979), 3–35.

    Google Scholar 

  9. Chavel, I.: Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.

    Google Scholar 

  10. Chernoff, P. R.: Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Anal. 12(1973), 401–414.

    Google Scholar 

  11. Donnelly, H.: The differential form spectrum of hyperbolic space, Manuscripta Math. 33(1981), 365–385.

    Google Scholar 

  12. Donnelly, H. and Xavier, F.: On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106(1984), 169–185.

    Google Scholar 

  13. de Rham, G.: Variétés Différentiables, Hermann, Paris, 1960.

    Google Scholar 

  14. Gaffney, M. P.: The harmonic operator for exterior differential forms, Proc. Nat. Acad. Sci. USA 37(1951), 48–50.

    Google Scholar 

  15. Mazzeo, R.: Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113(1991), 25–45.

    Google Scholar 

  16. Mazzeo, R. and Phillips, R. S.: Hodge theory on hyperbollic manifolds, Duke Math. J. 60(1990), 509–559.

    Google Scholar 

  17. Stein, E.: Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruna, J., Girbau, J. Mapping Properties of the Laplacian in Sobolev Spaces of Forms on Complete Hyperbolic Manifolds. Annals of Global Analysis and Geometry 25, 151–176 (2004). https://doi.org/10.1023/B:AGAG.0000018554.31037.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGAG.0000018554.31037.23

Navigation