Skip to main content
Log in

Effects of Plant Diet on Detoxification Enzyme Activities of Two Grasshoppers, Melanoplus differentialis and Taeniopoda eques

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The polyphagous grasshoppers Melanoplus differentialis and Taeniopoda eques use different foraging patterns: over time M. differentialis tends to reduce the variety of host plants it feeds on and specialize on particular plants (diet components), whereas T. eques mixes host plants to achieve a very diverse diet. We tested the hypothesis that these differing behaviors are correlated with differing patterns of detoxification enzymes. The activities of midgut, fat body, and malpighian tubule detoxification enzymes were determined in last instars of the two grasshoppers, reared for five days on single-or mixed-plant diets. Significant differences in several cytochrome P450 activities and glutathione S-transferase were evident for nymphal grasshoppers feeding on different plant diets. However, the behavioral differences between the two species could not be explained by an underlying flexibility of detoxification response in M. differentialis, but lacking in T. eques. This is the first reported evidence that detoxification enzyme activities are affected by plant diet in polyphagous orthopterans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Baldwin, W. S., and Leblanc, G. A. 1992. The anti–carcinogenic plant compound indole–3–carbinol differentially modulates P450–mediated steroid hydroxylase activities in mice. Chem. Biol. Interact. 83:155–169.

    Google Scholar 

  • Benke, G. M., and Wilkinson, C. F. 1971a. In vitro microsomal epoxidase activity and susceptibility to carbaryl and carbaryl–piperonyl butoxide combinations in house crickets of different age and sex. J. Econ. Entomol. 64:1032–1035.

    Google Scholar 

  • Benke, G. M., and Wilkinson, C. F. 1971b. Microsomal oxidation in the house cricket, Acheta domesticus (L.). Pestic. Biochem. Physiol. 1:19–31.

    Google Scholar 

  • Benke, G. M., Wilkinson, C. F., and Telford, J. N. 1972. Microsomal oxidases in a cockroach, Gromphadorhina protentosa. J. Econ. Entomol. 65:1221–1224.

    Google Scholar 

  • Berenbaum, M. R. 1991. Comparative processing of allelochemicals in the papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17:213–221.

    Google Scholar 

  • Berenbaum, M. R., and Isman, M. B. 1989. Herbivory in holometabolous and hemimetabolous insects: Contrasts between Orthoptera and Lepidoptera. Experientia 45:229–236.

    Google Scholar 

  • Bernays, E. A. 1992. Dietary mixing in generalist grasshoppers, pp. 146–148, in S. B. J. Menken, J. H. Viser, and P. Harrewijn (eds.). Proceedings 8th International Symposium on Insect–Plant Relationships. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bernays, E. A., Bright, K., Howard, J. J., Raubenheimer, D., and Champagne, D. 1992. Variety is the spice of life: Frequent switching between foods in the polyphagous grasshopper Taeniopoda eques Burmeister (Orthoptera: Acrididae). Anim. Behav. 44:721–731.

    Google Scholar 

  • Brattsten, L. B. 1984. Inducibility of metabolic insecticide defenses in boll weevils and tobacco budworm caterpillars. Pestic. Biochem. Physiol. 27:13–23.

    Google Scholar 

  • Brattsten, L. B., Wilkinson, C. F., and Eisner, T. 1977. Herbivore–plant interactions: Mixed–function oxidases and secondary plant substances. Science 196:1349–1352.

    Google Scholar 

  • Burke, M. D., and Prough, R. A. 1978. Fluorometric and chromatographic methods for measuring microsomal biphenyl hydroxylation. Methods Enzymol. 52:309–407.

    Google Scholar 

  • Chakraborty, J., and Smith, J. N. 1967. Enzymic oxidation of some alkybenzenes in insects and vertebrates. Biochem. J. 102:498–503.

    Google Scholar 

  • Champagne, D. E., Isman, M. B., and Towers, G. H. N. 1989. Insecticidal activity of phytochemicals and extracts of the Meliaceae. Am. Chem. Soc. Symp. Ser. 387:95–109.

    Google Scholar 

  • Cottee, P. K., Bernays, E. A., and Mordue, A. J. 1988. Comparisons of deterrency and toxicity of selected secondary plant compounds to an oligophorous and a polyphagous acridid. Entomol. Exp. Appl. 46:241–247.

    Google Scholar 

  • Dimock, M. B., Kenedy, G. G., and Williams, W. G. 1982. Toxicity studies of analogs of 2–tridecanone, a naturally occuring toxicant from a wild tomato. J. Chem. Ecol. 8:837–842.

    Google Scholar 

  • Egaas, E., Svendsen, N. O., Kobro, S., and Skaare, J. U. 1992. Glutathione S–transferases in endosulfan–treated red sword grass moth (Xylena vetusta Hb.) and hebrew character moth (Orthosia gothica L.) reared on leaves from apple (Malus domestica Cult.) or willow (Salix caprea L.). Comp. Biochem. Physiol. 101C:143–150.

    Google Scholar 

  • Farrar, R. R., and Kennedy, G. G. 1987. 2–Undecanone, a constituent of the glandular trichromes of Lycopersicon hirsutum f. glabratum: Effects on Heliothis zea and Manduca sexta growth and survival. Entomol. Exp. Appl. 43:17–23.

    Google Scholar 

  • Feyereisen, R., and Durst, F. 1978. Ecdysterone Biosynthesis: A microsomal cytochrome–P450–linked ecdysone 20–monooxygenase from tissues of the African migratory locust. Eur. J. Biochem. 88:37–47.

    Google Scholar 

  • Feyereisen, R., and Farnsworth, D. E. 1985. Developmental changes of microsomal cytochrome P450 monoxygenases in larval and adult Diploptera punctata. Insect Biochem. 15:755–761.

    Google Scholar 

  • Feyereisen, R., and Vincent, D. R. 1984. Characterization of antibodies to housefly NADPH–cytochrome P450 reductase. Insect Biochem. 14:163–168.

    Google Scholar 

  • Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds. Am. Nat. 108:269–289.

    Google Scholar 

  • Grant, D. E., Bender, D. E., and Hammock, B. D. 1989. Quantitative kinetic assays for glutathione S–transferase and general esterase in individual mosquitoes using an EIA reader. Insect Biochem. 19:741–751.

    Google Scholar 

  • Isman, M. B. 1985. Toxicity and tolerance of sesquiterpene lactones in the migratory grasshopper, Melanopus sanquinipes (Acrididae). Pestic. Biochem. Physiol. 24:348–354.

    Google Scholar 

  • Isman, M. B., Proksch, P., and Witte, L. 1987. Metabolism and excretion of acetylchromenes by the migratory grasshopper. Arch. Insect Biochem. Physiol. 6:109–120.

    Google Scholar 

  • Jermy, T. 1987. The role of experience in the host selection of phytophagous insects, pp. 143–157, in R. F. Chapman, E. A. Bernays, and J. G. Stoffolano, (eds.). Perspectives in Chemoreception and Behavior. Springer–Verlag, New York.

    Google Scholar 

  • Jones, C. G., Whitman, D. W., Compton, S. J., Silk, P. J., and Blum, M. S. 1989. Reduction in diet breadth results in sequestration of plant chemicals and increases efficacy of chemical defense in a generalist grasshopper. J. Chem. Ecol. 15:1811–1822.

    Google Scholar 

  • Kaminsky, L. S., and Fasco, M. J. 1992. Small intestinal cytochrome P450. Crit. Rev. Toxicol. 21:407–422.

    Google Scholar 

  • Khan, M., and Matsumura, F. 1972. Induction of mixed–function oxidase and protein synthesis by DDT and dieldrin in German and American cockroaches. Pestic. Biochem. Physiol. 2:236–243.

    Google Scholar 

  • Kulkarni, A., Smith, F., and Hodgson, E. 1976. Occurrence and characterization of microsomal cytochrome P450 in several vertebrate and insect species. Comp. Biochem. Physiol. 54B:509–513.

    Google Scholar 

  • Kumi, C. O., Nicholson, R. A., and Law, F. C. P. 1991. Absorption, degradation and excretion of benzo(s)pyrene in the cricket (Acheta domesticus). Xenobiotica 21:1357–1362.

    Google Scholar 

  • Kyeramaten, G. A., and Vesell, E. S. 1991. Metabolism of nicotine. Drug Metab. Rev. 23:3–41.

    Google Scholar 

  • Lin, S. Y. H., Trumble, J. T., and Kumamoto, J. 1987. Activity of volatile compounds in glandular trichromes of Lycopersicon species against two insect herbivores. J. Chem. Ecol. 13:837–850.

    Google Scholar 

  • Lindroth, R. L. 1989. Biochemical detoxification: Mechanism of differential tiger swallowtail tolerance to phenolic glycosides. Oecologia 81:219–224.

    Google Scholar 

  • Ma, R., Cohen, M. B., Berenbaum, M. R., and Schuler, M. A. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize furanocoumarins. Arch. Biochem. Biophys. 310:332–340.

    Google Scholar 

  • Neal, J. J. 1987. Metabolic cost of mixed–function oxidase induction in Heliothis zea. Entomol. Exp. Appl. 43:175–179.

    Google Scholar 

  • Omura, T., and Sato, R. 1964. The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239:2370–2379.

    Google Scholar 

  • Self, L. S., Guthrie, F. E., and Hodgson, E. 1964. Metabolism of nicotine by tobacco–feeding insects. Nature 204:300–301.

    Google Scholar 

  • Singh, G. J. P., and Thornhill, R. A. 1980. The metabolism of [14C]diedrin by microsomal preparations of different tissues of cockroaches and locusts. Comp. Biochem. Physiol. 67C:79–82.

    Google Scholar 

  • Smirle, M. J., and Isman, M. B. 1992. Metabolism and elimination of ingested allelochemicals in a holometabolous and a hemimetabolous insect. Entomol. Exp. Appl. 62:183–190.

    Google Scholar 

  • Snyder, M. J., and Glenndinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. Part A 179:255–261.

    Google Scholar 

  • Snyder, M. J., Hsu, E. L., and Feyereisen, R. 1993. Induction of cytochrome P450 activities by nicotine in the tobacco hornworm. Manduca sexta. J. Chem. Ecol. 19:2903–2916.

    Google Scholar 

  • Snyder, M. J., Walding, J. K., and Feyereisen, R. 1994. Metabolic fate of the allelochemical nicotine in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 25:455–465.

    Google Scholar 

  • Van Loon, J. J. A. 1991. Measuring food utilization in plant–feeding insects–toward a metabolic and dynamic approach, pp. 79–124, in E. A. Bernays (ed.). Insect–Plant Interactions, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wadleigh, R. W., and Yu, S. J. 1988. Detoxification of isothiocyanate allelochemicals by glutathione S–transferase in three lepidopterous species. J. Chem. Ecol. 14:1279–1290.

    Google Scholar 

  • Yu, S. J. 1982. Microsomal oxidases in the mole crickets, Scapteriscus acletus Rehn and Hebard and Scapteriscus vicinus Scudder. Pestic. Biochem. Physiol. 17:170–176.

    Google Scholar 

  • Yu, S. J. 1983. Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworms. Pestic. Biochem. Physiol. 19:330–336.

    Google Scholar 

  • Yu, S. J. 1984. Interactions of allelochemicals with detoxification enzymes of insecticide–susceptible and resistant fall armyworms. Pestic. Biochem. Physiol. 22:60–68.

    Google Scholar 

  • Yu, S. J. 1988. Microsomal S–demethylase activity in four lepidopterous insects. Pestic. Biochem. Physiol. 31:182–186.

    Google Scholar 

  • Yu, S. J., and Ing, R. T. 1984. Microsomal biphenyl hydroxylase of fall armyworm larvae and its induction by allelochemicals and host plants. Comp. Biochem. Physiol. 78C:145–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, M.J., Champagne, D.E., Cohen, M.B. et al. Effects of Plant Diet on Detoxification Enzyme Activities of Two Grasshoppers, Melanoplus differentialis and Taeniopoda eques . J Chem Ecol 24, 2151–2165 (1998). https://doi.org/10.1023/A:1020797912523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020797912523

Navigation