Skip to main content

Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records

Abstract

Weather variation and climate fluctuations are the main sources of ecosystem variability in remote mountain lakes. Here we describe the main patterns of seasonal variability in the ecosystems of nine lakes in Europe, and discuss the implications for recording climatic features in their sediments. Despite the diversity in latitude and size, the lakes showed a number of common features. They were ice-covered between 5–9 months, and all but one were dimictic. This particular lake was long and shallow, and wind action episodically mixed the water column throughout the ice-free period. All lakes showed characteristic oxygen depletion during the ice-covered-period, which was greater in the most productive lakes. Two types of lakes were distinguished according to the number of production peaks during the ice-free season. Lakes with longer summer stratification tended to have two productive periods: one at the onset of stratification, and the other during the autumn overturn. Lakes with shorter stratification had a single peak during the ice-free period. All lakes presented deep chlorophyll maxima during summer stratification, and subsurface chlorophyll maxima beneath the ice. Phosphorus limitation was common to all lakes, since nitrogen compounds were significantly more abundant than the requirements for the primary production observed. The major chemical components present in the lakes showed a short but extreme dilution during thawing. Certain lake features may favour the recording of particular climatic fluctuations, for instance: lakes with two distinct productive periods, climatic fluctuations in spring or autumn (e.g., through chrysophycean cysts); lakes with higher oxygen consumption, climatic factors affecting the duration of the ice-cover (e.g., through low-oxygen tolerant chironomids); lakes with higher water retention time; changes in atmospheric deposition (e.g., through carbon or pigment burial); lakes with longer stratification, air temperature changes during summer and autumn (e.g., through all epilimnetic species).

This is a preview of subscription content, access via your institution.

References

  1. Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae. Biology and Ecology of non-biting midges. Chapman & Hall, London, UK, 572 pp.

    Google Scholar 

  2. Barbieri, A. & R. Mosello, 2000. Recent trends in chemistry, and mass budget of high altitude lake in the southern Alps (Laghetto Inferiore, Cantone Ticino, Switzerland). J. Limnol. 59: 103-112.

    Google Scholar 

  3. Battarbee, R. W., J.-A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J. Paleolim. 28: 161-179.

    Google Scholar 

  4. Brancelj, A., M. Šiško, G. Muri, P. Appleby, A. Lami, E. Shilland, N. L. Rose, C. Kamenik, S. J. Brooks & J. A. Dearing, 2002. Lake Jezero v Ledvici (NW Slovenia)-changes in sediment records over the last two centuries. J. Paleolim. 28: 47-58.

    Google Scholar 

  5. Catalan, J., 1988. Physical properties of the environment relevant to the pelagic ecosystem dynamics of a deep high-mountain lake (Estany Redó, Central Pyrenees). Oecol. Aquat. 9: 80-123.

    Google Scholar 

  6. Catalan, J., 1989. The winter cover of a high-mountain Mediterranean lake (Estany Redó, Pyrenees). Water Resour. Res. 25: 519-527.

    Google Scholar 

  7. Catalan, J., 1991. The relationship between the functional anatomy of lakes and primary production. Oecol. Aquat. 10: 77-94.

    Google Scholar 

  8. Catalan, J., 1992. Evolution of dissolved and particulate matter during the ice-covered period in a deep high-mountain lake. Can. J. Fish. aquat. Sci. 49: 945-955.

    Google Scholar 

  9. Catalan, J., 2000. Primary production in a high mountain lake: an overview from minutes to kiloyears. Att. Assoc. Ital. Oceanol. Limnol. 13: 1-21.

    Google Scholar 

  10. Catalan, J. & L. Camarero, 1991. Ergoclines and biological processes in high-mountain lakes: similarities between the summer stratification and the ice-forming period in lake Redó (Pyrenees). Verh. Int. Verein. Limnol. 24: 1011-1015.

    Google Scholar 

  11. Catalan, J. & L. Camarero, 1993. Seasonal changes in pH and alkalinity in two Pyrenean high-mountain lakes. Verh. Int. Verein. Limnol. 25: 749-753.

    Google Scholar 

  12. Catalan, J., S. Pla, M. Rieradevall, M. Felip, M. Ventura, T. Buchaca, L. Camarero, A. Brancelj, P. G. Appleby, A. Lami, J. A. Grytnes, A. Agustí-Panareda & R. Thompson, 2002. Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J. Paleolim. 28: 129-145.

    Google Scholar 

  13. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In E. F. Stoermer, J. P. Smol (eds), The Diatoms: Application for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK, 227-244.

    Google Scholar 

  14. Felip, M., F. Bartumeus, S. Halac & J. Catalan, 1999. Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). J. Limnol. 58: 193-202.

    Google Scholar 

  15. Felip, M. & J. Catalan, 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res. 22: 91-105.

    Google Scholar 

  16. Fott, J., M. Blazo, E. Stuchlík & O. Strunecký, 1999. Phytoplankton in three Tatra Mountain lakes of different acidification status. J. Limnol. 58: 107-116.

    Google Scholar 

  17. Goudsmit, G.-H., G. Lemcke, D. M. Livingstone, A. F. Lotter, B. Müller & M. Sturm, 2000. Hagelseewli: a fascinating mountain lake-suitable for palaeoclimate studies? Verh. Int. Verein. Limnol. 27: 1013-1022.

    Google Scholar 

  18. Granados, I. & M. Toro, 2000. Recent warming in a high mountain lake (Laguna Cimera, Central Spain) inferred by means of fossil chironomids. J. Limnol. 59(suppl 1): 109-119.

    Google Scholar 

  19. Guilizzoni, P., A. Lami & A. Marchetto, 1992. Plant pigment ratios from lake sediments as indicators of recent acidification in alpine lakes. Limnol. Oceanogr. 37: 1565-1569.

    Google Scholar 

  20. Imberger, J. & J. C. Patterson, 1990. Physical limnology. Adv. Appl. Mech. 27: 303-375.

    Google Scholar 

  21. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191-194.

    Google Scholar 

  22. Koinig, K. A., N. Büsing, A. Wille, B. Sattler, R. Schmidt & R. Psenner, 2000. Diatom communities in the ice cover of an alpine lake-their influence on pH reconstruction from fossil diatom assemblages. Verh. Int. Verein. Limnol. 27: 1203.

    Google Scholar 

  23. Livingstone, D. M., 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Change 37: 407-439.

    Google Scholar 

  24. Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arctic Antarctic Alpine Res. 31: 341-352.

    Google Scholar 

  25. Lotter A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat. Sci. Rev. 18: 717-735.

    Google Scholar 

  26. Margalef, R., 1983. Limnología. Omega, Barcelona, Spain, 1010 pp.

    Google Scholar 

  27. Nickus, U., H. Thies, M. Kuhn & R. Psenner, 1998. The snow cover at a headwater site in the Tyrolean Alps: seasonal and local variability of atmospheric trace substances in the snow pack. In Tappeiner, U., F. V. Ruffini & M. Fumai (eds), HeadWater '98: Hydrology, Water Resources and Ecology of Mountain Areas. IAHS Publ., 39-42.

  28. Pla, S., 1999. Chrysophycean cysts from the Pyrenees and their applicability as palaeoenvironmental indicators. Ph.D. thesis, University of Barcelona, Barcelona, Spain, 277 pp.

    Google Scholar 

  29. Psenner, R. & J. Catalan, 1994. Chemical composition of lakes in crystalline basins: a combination of atmospheric deposition, geologic background, biological activity, and human action. In Margalef. R. (ed.), Limnology Now, A Paradigm of Planetary Problems. Elsevier, Amsterdam, The Netherlands, 255-314.

    Google Scholar 

  30. Redfield, A. C., B. H. Ketchum & E. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. Ideas and Observations in the Study of the Seas. Vol. 2. John Wiley & Sons, New York, 26-77.

    Google Scholar 

  31. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe, Germany, 371 pp.

    Google Scholar 

  32. Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrolog. Proc. 11: 1043-1067.

    Google Scholar 

  33. Schmidt, W., 1928. Ñber Temperatur-und Stabilitätsverhältnisse von Seen. Geogr. Ann. 10: 145-177.

    Google Scholar 

  34. Simona, M., A. Barbieri, M. Veronesi, S. Malusardi, V. Straškrabová, 1999. Seasonal dynamics of plankton in a mountain lake in the southern Alps (Laghetto Inferiore, Switzerland). J. Limnol. 58: 169-178.

    Google Scholar 

  35. Sommaruga-Wölgrath, S., K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64-67.

    Google Scholar 

  36. Straškrabová, V., C. Callieri & J. Fott (eds), 1999a. Pelagic food web in mountain lakes (MOuntain LAkes Research program). J. Limnol. 58.

  37. Straškrabová, V., C. Callieri, P. Carrillo, L. Cruz-Pizarro, J. Fott, P. Hartman, M. Macek, J. M. Medina-Sánchez, J. Nedoma & K. Šimek, 1999b. Investigations on pelagic food webs in mountain lakes-aims and methods. J. Limnol. 58: 77-87.

    Google Scholar 

  38. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. John Wiley & Sons. New York, 780 pp.

    Google Scholar 

  39. The MOLAR Water Chemistry Group, 1999. The MOLAR project: atmospheric deposition and lake water chemistry. J. Limnol. 58: 88-106.

    Google Scholar 

  40. Thies, H., U. Nickus & R. Psenner, 1998. Response of discharge and water quality in headwater brooks on distinct hydroclymatic conditions in the Tyrolean Alps. In Hydrology, water resources and ecology in headwaters. Proceedings of the HeadWater'98 Conference. IAHS Publ. 248: 491-497.

    Google Scholar 

  41. Thies, H., U. Nickus, C. Arnold, R. Schnegg, A. Wille & R. Psenner, 2000. Biogeochemistry of a high mountain lake in the Austrian Alps. Verh. Int. Verein. Limnol. 27: 4513-4516.

    Google Scholar 

  42. Ventura, M., L. Camarero, T. Buchaca, F. Bartumeus, D. M. Livingstone & J. Catalan, 2000. Main features of the seasonal variability in the external forcing and dynamics of a deep mountain lake (Redó, Pyrenees). J. Limnol. 59(suppl. 1): 97-108.

    Google Scholar 

  43. Wathne, B. M. & H. E. Hansen, 1997. MOLAR. Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change: a programme of mountain lake research. MOLAR Project Manual. NIVA, Report O-96061.

  44. Williams, D. D. & B. W. Feltmate, 1992. Aquatic Insects. CAB International, Wallingford, UK, 358 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catalan, J., Ventura, M., Brancelj, A. et al. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28, 25–46 (2002). https://doi.org/10.1023/A:1020315817235

Download citation

  • alpine lakes
  • thermal regime
  • chlorophyll
  • nutrients
  • major chemicals
  • oxygen