Advertisement

Journal of Paleolimnology

, Volume 28, Issue 1, pp 25–46 | Cite as

Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records

  • J. Catalan
  • M. Ventura
  • A. Brancelj
  • I. Granados
  • H. Thies
  • U. Nickus
  • A. Korhola
  • A.F. Lotter
  • A. Barbieri
  • E. Stuchlík
  • L. Lien
  • P. Bitušík
  • T. Buchaca
  • L. Camarero
  • G.H. Goudsmit
  • J. Kopáćek
  • G. Lemcke
  • D.M. Livingstone
  • B. Müller
  • M. Rautio
  • M. Šiško
  • S. Sorvari
  • F. Šporka
  • O. Strunecký
  • M. Toro
Article

Abstract

Weather variation and climate fluctuations are the main sources of ecosystem variability in remote mountain lakes. Here we describe the main patterns of seasonal variability in the ecosystems of nine lakes in Europe, and discuss the implications for recording climatic features in their sediments. Despite the diversity in latitude and size, the lakes showed a number of common features. They were ice-covered between 5–9 months, and all but one were dimictic. This particular lake was long and shallow, and wind action episodically mixed the water column throughout the ice-free period. All lakes showed characteristic oxygen depletion during the ice-covered-period, which was greater in the most productive lakes. Two types of lakes were distinguished according to the number of production peaks during the ice-free season. Lakes with longer summer stratification tended to have two productive periods: one at the onset of stratification, and the other during the autumn overturn. Lakes with shorter stratification had a single peak during the ice-free period. All lakes presented deep chlorophyll maxima during summer stratification, and subsurface chlorophyll maxima beneath the ice. Phosphorus limitation was common to all lakes, since nitrogen compounds were significantly more abundant than the requirements for the primary production observed. The major chemical components present in the lakes showed a short but extreme dilution during thawing. Certain lake features may favour the recording of particular climatic fluctuations, for instance: lakes with two distinct productive periods, climatic fluctuations in spring or autumn (e.g., through chrysophycean cysts); lakes with higher oxygen consumption, climatic factors affecting the duration of the ice-cover (e.g., through low-oxygen tolerant chironomids); lakes with higher water retention time; changes in atmospheric deposition (e.g., through carbon or pigment burial); lakes with longer stratification, air temperature changes during summer and autumn (e.g., through all epilimnetic species).

alpine lakes thermal regime chlorophyll nutrients major chemicals oxygen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae. Biology and Ecology of non-biting midges. Chapman & Hall, London, UK, 572 pp.Google Scholar
  2. Barbieri, A. & R. Mosello, 2000. Recent trends in chemistry, and mass budget of high altitude lake in the southern Alps (Laghetto Inferiore, Cantone Ticino, Switzerland). J. Limnol. 59: 103-112.Google Scholar
  3. Battarbee, R. W., J.-A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J. Paleolim. 28: 161-179.Google Scholar
  4. Brancelj, A., M. Šiško, G. Muri, P. Appleby, A. Lami, E. Shilland, N. L. Rose, C. Kamenik, S. J. Brooks & J. A. Dearing, 2002. Lake Jezero v Ledvici (NW Slovenia)-changes in sediment records over the last two centuries. J. Paleolim. 28: 47-58.Google Scholar
  5. Catalan, J., 1988. Physical properties of the environment relevant to the pelagic ecosystem dynamics of a deep high-mountain lake (Estany Redó, Central Pyrenees). Oecol. Aquat. 9: 80-123.Google Scholar
  6. Catalan, J., 1989. The winter cover of a high-mountain Mediterranean lake (Estany Redó, Pyrenees). Water Resour. Res. 25: 519-527.Google Scholar
  7. Catalan, J., 1991. The relationship between the functional anatomy of lakes and primary production. Oecol. Aquat. 10: 77-94.Google Scholar
  8. Catalan, J., 1992. Evolution of dissolved and particulate matter during the ice-covered period in a deep high-mountain lake. Can. J. Fish. aquat. Sci. 49: 945-955.Google Scholar
  9. Catalan, J., 2000. Primary production in a high mountain lake: an overview from minutes to kiloyears. Att. Assoc. Ital. Oceanol. Limnol. 13: 1-21.Google Scholar
  10. Catalan, J. & L. Camarero, 1991. Ergoclines and biological processes in high-mountain lakes: similarities between the summer stratification and the ice-forming period in lake Redó (Pyrenees). Verh. Int. Verein. Limnol. 24: 1011-1015.Google Scholar
  11. Catalan, J. & L. Camarero, 1993. Seasonal changes in pH and alkalinity in two Pyrenean high-mountain lakes. Verh. Int. Verein. Limnol. 25: 749-753.Google Scholar
  12. Catalan, J., S. Pla, M. Rieradevall, M. Felip, M. Ventura, T. Buchaca, L. Camarero, A. Brancelj, P. G. Appleby, A. Lami, J. A. Grytnes, A. Agustí-Panareda & R. Thompson, 2002. Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J. Paleolim. 28: 129-145.Google Scholar
  13. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In E. F. Stoermer, J. P. Smol (eds), The Diatoms: Application for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK, 227-244.Google Scholar
  14. Felip, M., F. Bartumeus, S. Halac & J. Catalan, 1999. Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). J. Limnol. 58: 193-202.Google Scholar
  15. Felip, M. & J. Catalan, 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res. 22: 91-105.Google Scholar
  16. Fott, J., M. Blazo, E. Stuchlík & O. Strunecký, 1999. Phytoplankton in three Tatra Mountain lakes of different acidification status. J. Limnol. 58: 107-116.Google Scholar
  17. Goudsmit, G.-H., G. Lemcke, D. M. Livingstone, A. F. Lotter, B. Müller & M. Sturm, 2000. Hagelseewli: a fascinating mountain lake-suitable for palaeoclimate studies? Verh. Int. Verein. Limnol. 27: 1013-1022.Google Scholar
  18. Granados, I. & M. Toro, 2000. Recent warming in a high mountain lake (Laguna Cimera, Central Spain) inferred by means of fossil chironomids. J. Limnol. 59(suppl 1): 109-119.Google Scholar
  19. Guilizzoni, P., A. Lami & A. Marchetto, 1992. Plant pigment ratios from lake sediments as indicators of recent acidification in alpine lakes. Limnol. Oceanogr. 37: 1565-1569.Google Scholar
  20. Imberger, J. & J. C. Patterson, 1990. Physical limnology. Adv. Appl. Mech. 27: 303-375.Google Scholar
  21. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191-194.Google Scholar
  22. Koinig, K. A., N. Büsing, A. Wille, B. Sattler, R. Schmidt & R. Psenner, 2000. Diatom communities in the ice cover of an alpine lake-their influence on pH reconstruction from fossil diatom assemblages. Verh. Int. Verein. Limnol. 27: 1203.Google Scholar
  23. Livingstone, D. M., 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Change 37: 407-439.Google Scholar
  24. Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arctic Antarctic Alpine Res. 31: 341-352.Google Scholar
  25. Lotter A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat. Sci. Rev. 18: 717-735.Google Scholar
  26. Margalef, R., 1983. Limnología. Omega, Barcelona, Spain, 1010 pp.Google Scholar
  27. Nickus, U., H. Thies, M. Kuhn & R. Psenner, 1998. The snow cover at a headwater site in the Tyrolean Alps: seasonal and local variability of atmospheric trace substances in the snow pack. In Tappeiner, U., F. V. Ruffini & M. Fumai (eds), HeadWater '98: Hydrology, Water Resources and Ecology of Mountain Areas. IAHS Publ., 39-42.Google Scholar
  28. Pla, S., 1999. Chrysophycean cysts from the Pyrenees and their applicability as palaeoenvironmental indicators. Ph.D. thesis, University of Barcelona, Barcelona, Spain, 277 pp.Google Scholar
  29. Psenner, R. & J. Catalan, 1994. Chemical composition of lakes in crystalline basins: a combination of atmospheric deposition, geologic background, biological activity, and human action. In Margalef. R. (ed.), Limnology Now, A Paradigm of Planetary Problems. Elsevier, Amsterdam, The Netherlands, 255-314.Google Scholar
  30. Redfield, A. C., B. H. Ketchum & E. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. Ideas and Observations in the Study of the Seas. Vol. 2. John Wiley & Sons, New York, 26-77.Google Scholar
  31. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe, Germany, 371 pp.Google Scholar
  32. Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrolog. Proc. 11: 1043-1067.Google Scholar
  33. Schmidt, W., 1928. Ñber Temperatur-und Stabilitätsverhältnisse von Seen. Geogr. Ann. 10: 145-177.Google Scholar
  34. Simona, M., A. Barbieri, M. Veronesi, S. Malusardi, V. Straškrabová, 1999. Seasonal dynamics of plankton in a mountain lake in the southern Alps (Laghetto Inferiore, Switzerland). J. Limnol. 58: 169-178.Google Scholar
  35. Sommaruga-Wölgrath, S., K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64-67.Google Scholar
  36. Straškrabová, V., C. Callieri & J. Fott (eds), 1999a. Pelagic food web in mountain lakes (MOuntain LAkes Research program). J. Limnol. 58.Google Scholar
  37. Straškrabová, V., C. Callieri, P. Carrillo, L. Cruz-Pizarro, J. Fott, P. Hartman, M. Macek, J. M. Medina-Sánchez, J. Nedoma & K. Šimek, 1999b. Investigations on pelagic food webs in mountain lakes-aims and methods. J. Limnol. 58: 77-87.Google Scholar
  38. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. John Wiley & Sons. New York, 780 pp.Google Scholar
  39. The MOLAR Water Chemistry Group, 1999. The MOLAR project: atmospheric deposition and lake water chemistry. J. Limnol. 58: 88-106.Google Scholar
  40. Thies, H., U. Nickus & R. Psenner, 1998. Response of discharge and water quality in headwater brooks on distinct hydroclymatic conditions in the Tyrolean Alps. In Hydrology, water resources and ecology in headwaters. Proceedings of the HeadWater'98 Conference. IAHS Publ. 248: 491-497.Google Scholar
  41. Thies, H., U. Nickus, C. Arnold, R. Schnegg, A. Wille & R. Psenner, 2000. Biogeochemistry of a high mountain lake in the Austrian Alps. Verh. Int. Verein. Limnol. 27: 4513-4516.Google Scholar
  42. Ventura, M., L. Camarero, T. Buchaca, F. Bartumeus, D. M. Livingstone & J. Catalan, 2000. Main features of the seasonal variability in the external forcing and dynamics of a deep mountain lake (Redó, Pyrenees). J. Limnol. 59(suppl. 1): 97-108.Google Scholar
  43. Wathne, B. M. & H. E. Hansen, 1997. MOLAR. Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change: a programme of mountain lake research. MOLAR Project Manual. NIVA, Report O-96061.Google Scholar
  44. Williams, D. D. & B. W. Feltmate, 1992. Aquatic Insects. CAB International, Wallingford, UK, 358 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Catalan
    • 1
    • 15
  • M. Ventura
    • 1
  • A. Brancelj
    • 2
  • I. Granados
    • 3
  • H. Thies
    • 4
  • U. Nickus
    • 5
  • A. Korhola
    • 6
  • A.F. Lotter
    • 7
  • A. Barbieri
    • 8
  • E. Stuchlík
    • 9
  • L. Lien
    • 10
  • P. Bitušík
    • 11
  • T. Buchaca
    • 1
  • L. Camarero
    • 1
  • G.H. Goudsmit
    • 12
  • J. Kopáćek
    • 13
  • G. Lemcke
    • 12
  • D.M. Livingstone
    • 12
  • B. Müller
    • 12
  • M. Rautio
    • 6
  • M. Šiško
    • 2
  • S. Sorvari
    • 6
  • F. Šporka
    • 14
  • O. Strunecký
    • 9
  • M. Toro
    • 3
  1. 1.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  2. 2.National Institute of BiologyLjublianaSlovenia
  3. 3.Departamento de Ecología, Facultad de CienciasUniversidad Autónoma de MadridCantoblanco, MadridSpain
  4. 4.Institut für Zoologie und LimnologieLeopold Franzens Universität InnsbruckInnsbruckAustria
  5. 5.Institute of Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria
  6. 6.Department of Ecology and Systematics, Division of HydrologyUniversity of HelsinkiHelsinkiFinland
  7. 7.Laboratory of Palaeobotany and PalynologyUtrechtThe Netherlands
  8. 8.Dipartimento del TerritorioSPAA Laboratorio di Studi AmbientaliLugano-ParadisoSwitzerland
  9. 9.Department of HydrobiologyCharles UniversityPrague 2Czech Republic
  10. 10.NIVANorway
  11. 11.Department of General EcologyTechnical UniversityZvolenSlovakia
  12. 12.Swiss Federal Institute of Environmental Science and TechnologyEAWAGDüdendorfSwitzerland
  13. 13.Hydrological InstituteAS CRČeské BudějoviceCzech Republic
  14. 14.Department of Hydrobiology, Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  15. 15.CEAB-CSICBlanesSpain

Personalised recommendations