Advertisement

Hydrobiologia

, Volume 369, Issue 0, pp 287–295 | Cite as

Specific composition and ecology of chrysophyte flagellates in Lake Sanabria (NW Spain)

  • Caridad De Hoyos
  • Juan José Aldasoro
  • Manuel Toro
  • Francisco A. Comín
Article

Abstract

Lake Sanabria is a glacial lake located at 1000 m a.s.l. in NW Spain. Its water is characterised by a low content of mineral salts, rather low pH, and oligotrophic status, which are all currently viewed as being favorable for Chrysophyte growth and proliferation. The study of the phytoplankton at different depths of the water column for three years showed that Chrysophytes were one of the groups of algae less well-represented in the phytoplankton (1% and 8%, respectively, for numbers of cells and biovolume).

Ochromonas, Pseudopedinella, Mallomonas and Dinobryon were the more representative chrysophyte genera. D. cylindricum, D. divergens and D. crenulatum were some of the Dinobryon species observed. M. akrokomos, M. crassisquama and M. costata were among the most frequent Mallomonas species. Observations on the Chrysophyte cysts from samples of the lake sediment suggest that variability of representation is higher than in planktonic samples.

The maximum values of Chrysophyte biovolume were found in the nutrient-exhausted epilimnion of summer and autumn which could be related to the mixotrophic capabilities of several species.

chrysophyte flagellates ecology cysts spatial-temporal distribution Lake Sanabria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldasoro, J. J., C. de Hoyos & J. C. Vega, 1992. El lago de Sanabria. Estudio limnológico. Monografias de la Red de Espacios Naturales de Castilla y León. Junta de Castilla y León. Consejería de Medio Ambiente y Ordenación del Territorio, 135 pp.Google Scholar
  2. APHA, 1989. Standard methods for the examination of Water, sewage and Wastewater. 17th ed. American Public Health Association, Washington, D.C., 1550 pp.Google Scholar
  3. Asmund, B. & J. Kristiansen, 1986. The genus Mallomonas (Chrysophyceae). Opera Bot. 85: 5–128.Google Scholar
  4. Calado, A. J. & S. C. Craveiro, 1995. Notes on the ecology of Synurophycean algae found in Portugal. Nord. J. Bot. 15: 641– 654.Google Scholar
  5. Capblancq, J., 1972. Phytoplancton et productivité primaire de quelques lacs d'altitude dans les Pyrénées. Ann. Limnol. 8: 231– 321.Google Scholar
  6. Cronberg, G., 1986. Chrysophycean cysts and scales in lake sediments: a review. In J. Kristiansen & R.A. Andersen (eds), Chrysophytes: aspects and problems. Cambridge University Press, Cambridge: 281–315.Google Scholar
  7. Cronberg, G. & C. D. Sandgren, 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In J. Kristiansen & R. A. Andersen (eds), Chrysophytes: aspects and problems. Cambridge University Press, Cambridge: 317–328.Google Scholar
  8. De Hoyos, C., 1996. ‘Limnología del lago de Sanabria. Variabilidad interanual del fitoplancton’. Tesis doctoral, Universidad de Salamanca.Google Scholar
  9. Dixit, A. S. & S. S. Dixit, 1989. Surface sediment chrysophytes from 35 Quebec lakes and their usefulness in reconstructing lake-water pH. Can. J. Bot. 67: 2071–2076.Google Scholar
  10. Duff, K. E. & J. P. Smol, 1994. Chrysophycean cyst flora from British Columbia (Canada) lakes. Nov. Hedw. 58: 353–389.Google Scholar
  11. Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Publishers, Dordrecht, 189 pp.Google Scholar
  12. Dürrschmidt, M., 1984. Studies on scale-bearing Chrysophyceae from the Giessen area, Federal Republic of Germany. Nord. J. Bot. 4: 123–143.Google Scholar
  13. Duthie, H. C. & C. J. Hart, 1987. The phytoplankton of the subarctic Canadian Great Lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 25: 1–9.Google Scholar
  14. Eloranta, P., 1989. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from national park lakes in souther and central Finland. Nord. J. Bot. 8: 671–681.Google Scholar
  15. Eloranta, P., 1995. Phytoplankton of the national park lakes in central and southern Finland. Ann. Bot. Fenn. 32: 193–209.Google Scholar
  16. Harris, G. P., 1986. Phytoplankton ecology. Chapman and Hall, London, 384 pp.Google Scholar
  17. Hutchinson, G. E., 1967. A treatise on Limnology. Volumen II. Introduction to lake biology and the limnoplankton (ed.), John Wiley & Sons, 1114 pp.Google Scholar
  18. Ilmavirta, V., 1980. Phytoplankton in 35 finnish brown-water lakes of different trophic status. Dev. Hydrobiol. 3: 121–130.Google Scholar
  19. Ilmavirta, V., 1983. The role of flagellated phytoplankton in chains of small brown-water lakes in southern Finland. Ann. Bot. Fenn. 20: 187–195.Google Scholar
  20. Järnefelt, H., 1952. Plankton als Indikator der Trophiegruppen der Seen. Ann. Acad. Sci. Fenn. (A IV)18: 1–29.Google Scholar
  21. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191–194.Google Scholar
  22. Kling, H. & J. Kristiansen, 1983. Scale-bearing Chrysophyceae (Mallomonadaceae) from Central and Northern Canada. Nord. J. Bot. 3: 269–290.Google Scholar
  23. Kristiansen, J., 1986. Silica-scale bearing Chrysophytes as environmental indicators. Br. phycol. J. 21: 425–436.Google Scholar
  24. Moore, J. M., 1978. Distribution and abundance of phytoplankton in 153 lakes, rivers and pools in the Northwest Territories. Can. J. Bot. 56: 1765–1773.Google Scholar
  25. Nauwerck, A., 1966. Beobachtungen über das Phytoplankton klarer Hochgebirgsseen. Schweiz. Z. Hydrol. 28: 4–28.Google Scholar
  26. Nicholls, K. H., 1990. The taxonomy of problematic Mallomonas species (Synurophyceae). II Mallomonas costata and M. galeiformis. Nord. J. Bot. 10: 243–247.Google Scholar
  27. Nygaard, G., 1978. Freshwater phytoplankton from the Narssaq Area, South Greenland. Bot. Tidsskr. 73: 191–238.Google Scholar
  28. Pearsall, W. H., 1932. Phytoplankton in the English lakes. II. The composition of the phytoplankton in relation to dissolved substances. J. Ecol. 20: 241–262.CrossRefGoogle Scholar
  29. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, 384 pp.Google Scholar
  30. Rodhe, W., 1948. Environmental requirements of freshwater plankton algae. Symbolae Botanicae Upsalienses 10, 149 pp.Google Scholar
  31. Rosén, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.Google Scholar
  32. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press: 9–104.Google Scholar
  33. Sandgren, C. D. & H. J. Carney, 1983. A flora of fossil chrysophycean cysts from the recent sediments of Frains lake, Michigan, USA. Nova Hedwigia 38: 129–165.Google Scholar
  34. Sheath, R. G. & J. A. Hellebust, 1978. Comparison of algae in the euplankton, tychoplankton and periphyton of a tundra pond. Can. J. Bot. 56: 1472–1483.Google Scholar
  35. Siver, P. A., 1989. The distribution of scaled chrysophytes along a PH gradient. Can J. Bot. 67: 2120–2130.Google Scholar
  36. Siver, P. A., 1991. The Biology of Mallomonas: Morphology, Taxonomy and Ecology. Kluwer Academic Publishers, Dordrecht, 230 pp.Google Scholar
  37. Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In: C. D. Sandgren, J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Ecology, Phylogeny and Development. Cambridge University Press: 232–268.Google Scholar
  38. Siver, P. A., J. S. Hamer & H. Kling, 1990. Separation of Mallomonas duerrschmidtiae sp. nov. from M. crassisquama and M. pseudocoronata: implications for paleolimnological research. J. Phycol. 26: 728–740.CrossRefGoogle Scholar
  39. Smol, J. P., 1984. The statospore of Mallomonas pseudocoronata (Mallomonadaceae, Chrysophyceae). Nord. J. Bot. 4: 827–831.Google Scholar
  40. Smol, J. P., 1988. The NorthAmerican ‘Endemic’ Mallomonas pseudocoronata (Mallomonadaceae, Chrysophyta) in an Austrian Lake. Phycologia 27: 427–429.Google Scholar
  41. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984a. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature 307: 628–630.CrossRefGoogle Scholar
  42. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984b. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (New York) lakes. Can. J. Bot. 62: 911–923.CrossRefGoogle Scholar
  43. Vega, J. C., C. de Hoyos & J. J. Aldasoro, 1992. The Sanabria lake. The largest natural freshwater lake in Spain. Limnetica 8: 49–57.Google Scholar
  44. Vilaseca, J. M., 1978. Fitoplancton de los lagos pirenaicos. Unpublished. Tesina de Licenciatura. Departamento de Ecología, Universidad Central de Barcelona, 102 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Caridad De Hoyos
  • Juan José Aldasoro
  • Manuel Toro
  • Francisco A. Comín

There are no affiliations available

Personalised recommendations