Skip to main content

Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes

Abstract

Two planktonic desmid species were compared in some of their ecophysiological characteristics. Staurastrum chaetoceras, well-known for its abundant occurrence in eutrophic lakes, showed a higher photosynthetic capacity and a higher maximum (intrinsic) growth rate than Cosmarium abbreviatum var. planctonicum, a taxon only encountered in oligo-mesotrophic habitats. The two taxa are comparable in cell size. When grown under a stringent continuous inorganic phosphorus (Pi) limitation C. abbreviatum realized a higher growth rate, due to a higher affinity for the uptake of Pi, than S. chaetoceras. On the other hand, under those conditions, S. chaetoceras displayed a two times higher maximum Pi uptake rate (Vmax). Regarding cellular alkaline phosphatase activity (hydrolysis of the organic P substrate MFP) C. abbreviatum showed both a higher affinity and maximum rate than S. chaetoceras.

In a way, these characteristics reflect the distribution pattern of the two species in the field. For in eutrophic lakes, during the summer algal bloom, species often have to compete for light as the growth limiting factor, whereas species occurring in oligo-mesotrophic lakes usually face permanently growth-limiting P concentrations. Since in eutrophic lakes during summer algal bloom dissolved inorganic P concentrations can also be low, the ability of phytoplankton to acquire Pi from short-lived pulses (e.g. excretion of P by zooplankton or fish) has to be considered an important additional characteristic in view of competition. Concerning the two desmid species under discussion, S. chaetoceras will have a competitive advantage when Pi is supplied in distinct pulses, due to its higher Vmax values. On the other hand, C. abbreviatum possibly will be superior in competition for organic P substrates.

In the species studied, different strategies were found to benefit optimally from the resource conditions inherent in the trophic state of their habitat.

This is a preview of subscription content, access via your institution.

References

  1. Berger, C. & H. E. Sweers, 1988. The IJsselmeer and its phytoplankton –with special attention to the suitability of the lake as a habitat for Oscillatoria agardhii Gom. J. Plankton Res. 10: 579–599.

    CAS  Google Scholar 

  2. Berman, T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–674.

    CAS  Google Scholar 

  3. Coesel, P. F. M. 1994. On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algol. Stud. 73: 65– 74.

    Google Scholar 

  4. Coesel, P. F. M. & K. Wardenaar, 1990. Growth responses of planktonic desmid species in a temperature-light gradient. Freshwat. Biol. 23: 551–560.

    Article  Google Scholar 

  5. Coesel, P. F. M. & K. Wardenaar, 1994. Light-limited growth and photosynthetic characteristics of two planktonic desmid species. Freshwater Biol. 31: 221–226.

    Article  Google Scholar 

  6. Doonan, B. B. & T. E. Jensen, 1977. Ultrastructural localization of alkaline phosphatase in the blue-green bacterium Plectonema boryanum. J. Bact. 132: 967–973.

    PubMed  CAS  Google Scholar 

  7. Guillard, R. R. L., P. Kilham & T. A. Jackson, 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana hasle and heimdal (= Cyclotella nana hustedt). J. Phycol. 9: 233–237.

    Article  CAS  Google Scholar 

  8. Hantke, B., I. Domany, P. Fleischer, M. Koch, P. Pleβ, M. Wiendl & A. Melzer, 1996a. Depth profiles of the kinetics of phosphatase activity in hardwater lakes of different trophic level. Arch. Hydrobiol. 135: 451–471.

    CAS  Google Scholar 

  9. Hantke, B., P. Fleischer, I. Domany, M. Koch, P. Pleβ, M. Wiendl & A. Melzer, 1996b. Prelease from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317: 151–162.

    Article  CAS  Google Scholar 

  10. Healey, F. P., 1985. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J. Phycol. 21: 134–146.

    Article  Google Scholar 

  11. Hecky, R. E. & P. Kilham, 1974. Environmental control of phytoplankton cell size. Limnol. Oceanogr. 19: 361–366.

    Google Scholar 

  12. Herbland, A., A. Le Bouteiller & P. Raimboult, 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. DeepSea Res. 32: 810–836.

    Google Scholar 

  13. Huisman, J. & F. J. Weissing, 1994. Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model. Ecology 75: 507–520.

    Article  Google Scholar 

  14. Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: A theoretical analysis. Am. Nat. 146: 536–564.

    Article  Google Scholar 

  15. Jansson, M., H. Olsson & K. Pettersson, 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157– 175.

    CAS  Google Scholar 

  16. Kilham, P. & D. Tilman, 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergebn. Limnol. 13: 110–119.

    Google Scholar 

  17. Knoechel, R. & F. deNoyelles, 1980. Analysis of the response of hypolimnetic phytoplankton in continuous culture to increased light or phosphorus using track autoradiography. Can. J. Fish. aquat. Sci. 37: 434–441.

    Google Scholar 

  18. Kuenzler, E. J. & J. P. Peras, 1965. Phosphatase of marine algae. Biol. Bull. 128: 271–284.

    Google Scholar 

  19. Lingeman, R., F. Heinis & A. Veen, 1987. Time series of physical, chemical and plankton parameters in Lake Maarsseveen I: 1980– 1986. Hydrobiol. Bull. 21: 25–38.

    Article  CAS  Google Scholar 

  20. Lund, J. W. G., 1965. The ecology of freshwater phytoplankton. Biol. Rev. 40: 231–293.

    Google Scholar 

  21. Maestrini, S. Y. & D. J. Bonin, 1981. Competition among phytoplankton based on inorganic macronutrients. In Platt T. (ed), Physiological basis of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. Dept. of Fisheries and Oceans, Ottawa: 264–278.

    Google Scholar 

  22. Perry, M. J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.

    Article  CAS  Google Scholar 

  23. Phillips, O. M., 1973. The equilibrium and stability of simple marine biological systems. I. Primary nutrients consumers. Am. Nat. 107: 73–93.

    Article  Google Scholar 

  24. Reynolds, C. S., 1987. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–235.

    Google Scholar 

  25. Rhee, GY.& I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635– 648.

    CAS  Article  Google Scholar 

  26. Riegman, R. & L. R. Mur, 1984. Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch. Microbiol. 139: 28–32.

    Article  CAS  Google Scholar 

  27. Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Article  CAS  Google Scholar 

  28. Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia 2: 327–342.

    Google Scholar 

  29. Spijkerman, E. & P. F. M. Coesel, 1996a. Phosphorus uptake and growth kinetics of two planktonic desmid species. Eur. J. Phycol. 31: 53–60.

    Google Scholar 

  30. Spijkerman, E. & P. F. M. Coesel, 1996b. Competition for phosphorus between planktonic desmid species in continuous flow culture. J. Phycol. 32: 939–948.

    Article  Google Scholar 

  31. Swain, W. R., R. Lingeman & F. Heinis, 1987. A characterization and description of the Maarsseveen Lake system. Hydrobiol. Bull. 21: 5–16.

    Article  CAS  Google Scholar 

  32. Taylor, P. A. & P. J. LeB. Williams, 1975. Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21: 90–98.

    PubMed  CAS  Article  Google Scholar 

  33. Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  34. Tilman, D., 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116: 362–393.

    Article  Google Scholar 

  35. Tilman, D., 1982. Resource competition and community structure. Princeton.

  36. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  37. Van Liere, L., J. G. Loogman & L. R. Mur, 1978. Measuring lightirradiance in cultures of phototrophic microorganisms. FEMS Microbiol. Letters 3: 161–164.

    Article  Google Scholar 

  38. Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.

    Google Scholar 

  39. Wehr, J. D., 1993. Effects of experimental manipulations of light and phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can. J. Fish. aquat. Sci. 50: 936–945.

    Article  Google Scholar 

  40. Wynne, D. & M. Gophen, 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.

    CAS  Google Scholar 

  41. Zevenboom, W., 1986. Ecophysiology of nutrient uptake, photosynthesis and growth. In Platt T. & W.K.W. Li (eds), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 391–422.

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spijkerman, E., Coesel, P.F.M. Ecophysiological characteristics of two planktonic desmid species originating from trophically different lakes. Hydrobiologia 369, 109–116 (1998). https://doi.org/10.1023/A:1017030817750

Download citation

  • alkaline phosphatase activity
  • desmids
  • light limitation
  • phosphorus limitation
  • phytoplankton
  • P uptake rates