Skip to main content
Log in

Simulation of the Delivery of Doxorubicin to Hepatoma

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop a two-dimensional simulation platform for the transport of doxorubicin to the hepatoma. To examine the temporal and spatial variation of doxorubicin concentration and its penetration into the tumor and the surrounding normal tissues.

Methods. Simulations are carried out with Fluent/UNS using the finite volume method to obtain the interstitial fluid pressure, velocity, and concentration profiles.

Results. Interstitial fluid pressure in the tumor and core reaches a steady state value in about 800 s, corresponding well with the assumed time scale for interstitial matrix fluid percolation (∼1000 s). There is a strong correlation between the drug concentration in the interstitial space of tumor and blood plasma for time >> 1 h. Concentration of doxorubicin is highest in the viable zone of the tumor at early times and in the necrotic core at later times, and lowest in the surrounding normal tissues. Diffusion is the dominant form of transport for doxorubicin.

Conclusions. Varying the volume of solution injected, while keeping the dosage the same, does not cause significant changes in the amount and distribution of drug in the tumor. A higher vascular exchange area leads to higher concentrations of drug in the tumor. Lymphatic drainage in the tumor causes negligible reductions in the mean concentrations in all three different zones. Cellular metabolism and DNA binding kinetics decrease the mean concentrations of drug by about 15 to 40%, as compared to the baseline case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Yamada, K. Kishi, M. Terada, T. Sonomura, and M. Sato. Transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma. In T. Tobe (ed.), Primary Liver Cancer in Japan, Springer-Verlag, Tokyo and New York, 1992 pp. 259-271.

    Google Scholar 

  2. L. B. Grochow and M. Matthew. A Clinician's Guide to Chemotherapy Pharmacokinetics and Pharmacodynamics, Williams & Wilkins, Baltimore, 1998.

    Google Scholar 

  3. P. A. Netti, L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behaviour of interstitial fluid pressure in solid tumors: Implications for drug delivery. Cancer Res. 55:5451-5458 (1995).

    Google Scholar 

  4. P. A. Netti, L. M. Hamberg, J. W. Babich, D. Kierstead, W. Graham, G. J. Hunter, G. L. Wolf, A. Fischman, Y. Boucher, and R. K. Jain. Enhancement of fluid filtration across tumor vessels: Implications for delivery of macromolecules. Proc. Natl. Acad. Sci. USA 96:3137-3142 (1999).

    Google Scholar 

  5. L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumors. I role of interstitial pressure and convection. Microvas. Res. 37:77-104 (1989).

    Google Scholar 

  6. L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumors. II role of heterogeneous perfusion and lymphatics. Microvas. Res. 40:246-263 (1990).

    Google Scholar 

  7. L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumors. III role of binding and metabolism. Microvas. Res. 41:5-23 (1991).

    Google Scholar 

  8. L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumors. IV a microscopic model of the perivascular distribution. Microvas. Res. 41:252-272 (1991).

    Google Scholar 

  9. F. E. Curry. Mechanics and thermodynamics of transcapillary exchange. In S. R. Geiger, E. M. Renkin, and C. C. Michel (eds.), Handbook of Physiology Section 2—The Cardiovascular System IV, Part 1, American Physiological Society, Bethesda, Maryland, 1984 pp. 309-374.

    Google Scholar 

  10. Fluent/UNS & Rampant Version 4.2 User's Guide Volumes 1–4, Fluent, Inc. 1997.

  11. B. W. Zweifach and H. H. Lipowsky. Pressure-flow relations in blood and lymph microcirculation. In S. R. Geiger, E. M. Renkin, and C. C. Michel (eds.), Handbook of Physiology Section 2—The Cardiovascular System IV, Part 1, American Physiological Society, Bethesda, Maryland, 1984 pp. 251-308.

    Google Scholar 

  12. R. K. Jain and J. Wei. Dynamics of drug transport in solid tumors: Distributed parameter model. J. Bioeng. 1:313-330 (1977).

    Google Scholar 

  13. C. H. Wang, J. Li, C. S. Teo, and T. Lee. The delivery of BCNU to brain tumors. J. Controll. Release 61:21-41 (1999).

    Google Scholar 

  14. H. Loveless, E. Arena, R. L. Felsted, and N. R. Bachur. Comparative mammalian metabolism of adriamycin and daunorubicin. Cancer Res. 38:593-598 (1978).

    Google Scholar 

  15. S. Kalyanasundaram, V. D. Calhoun, and K. W. Leong. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am. J. Physiol. 273:R1810-R1821 (1997).

    Google Scholar 

  16. Y. M. F. Goh. Simulation of drug delivery to hepatoma, B. Eng. Thesis, Department of Chemical and Environmental Engineering, National University of Singapore (1999).

  17. J. R. Welly, C. E. Wicks, and R. E. Wilson. Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, New York, 1984.

    Google Scholar 

  18. V. Rizzo, N. Sacchi, and M. Menozzi. Kinetic studies of anthracycline-DNA interaction by fluorescence stopped flow confirm a complex association mechanism. Biochemistry 28:274-282 (1989).

    Google Scholar 

  19. M. Yang, H. L. Chan, W. Lam, and W. F. Fong. Cytotoxicity and DNA binding characteristics of dextran-conjugated doxorubicins. Biochim. Biophys. Acta 1380:329-335 (1998).

    Google Scholar 

  20. F. Gabor, I. Haberl, M. Wirth, K. Richter, G. Theyer, G. Baumgartner, E. Wenzl, and G. Hamilton. In vitro antitumor activity of MIC2 protein-doxorubicin conjugates. Int. J. Oncology 9:527-531 (1996).

    Google Scholar 

  21. R. Kirshna, M. St-Louis, and L. D. Mayer. Increased intracellular drug accumulation and complete chemosensitization achieved in multidrug-resistant solid tumors by co-administering valspodar (PSC 833) with sterically stabilized liposomal doxorubicin. Int. J. Cancer 85:131-141 (2000).

    Google Scholar 

  22. M. Wartenberg, C. Frey, H. Diedershagen, J. Ritgen, J. Hescheler, and H. Sauer. Development of an intrinsic P-glycoprotein-mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Int. J. Cancer 75:855-863 (1998).

    Google Scholar 

  23. E. M. Renkin. Control of Microcirculation and Blood-tissue Exchange. In S. R. Geiger, E. M. Renkin, and C. C. Michel (eds.), Handbook of Physiology Section 2—The Cardiovascular System IV, Part 2, American Physiological Society, Bethesda, Maryland, 1984 pp. 627-688.

    Google Scholar 

  24. R. K. Jain. Determinants of tumor blood flow: A review. Cancer Res. 48:2641-2658 (1988).

    Google Scholar 

  25. E. M. Winter. Basic Clinical Pharmacokinetics, Applied Therapeutics, Inc., San Francisco, 1980.

    Google Scholar 

  26. J. Robert, N. B. Bui, and P. Vrignaud. Pharmacokinetics of doxorubicin in sarcoma patients. Euro. J. Clin. Pharmacol. 31:695-699 (1987).

    Google Scholar 

  27. D. E. Hilmas and E. L. Gillette. Morphometric analyses of the microvasculature of tumor during growth and after x-irradiation. Cancer 33:103-110 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, YM.F., Kong, H.L. & Wang, CH. Simulation of the Delivery of Doxorubicin to Hepatoma. Pharm Res 18, 761–770 (2001). https://doi.org/10.1023/A:1011076110317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011076110317

Navigation