Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding

Abstract

During germplasm explorations carried out in Peru and Colombia, interbreeding complexes of wild and cultivated common bean were observed in both countries, eight in Apurimac and Cusco departments of Peru and eight in Cundinamarca and Boyaca´ departments of Colombia. The existence of complexes was evidenced both by segregation of wild and cultivated morphological traits in certain populations, and by the presence of genetically stabilized weedy types which were assumed to have arisen from past hybridization. Observations on phaseolin seed protein confirmed that genetic exchange was occurring. Phaseolin types introduced from other regions were in incipient stages of introgression into local populations. On the other hand, local phaseolin types were observed in all phases of the complexes from totally wild to fully cultivated beans, suggesting that the complexes had undergone a long evolution. Complexes could be an effective means to generate genetic variability, introgressing genes from wild populations into cultivated types and complementing modern plant breeding programs. The conservation of such complexes depends on the continued existence of the wild, weedy and cultivated beans in close proximity; on the maintenance of a semi-domesticated environment; and on the willingness of farmers to leave weedy types in the field.

This is a preview of subscription content, access via your institution.

References

  1. Acosta Gallegos, J.A., P. Gepts & D.G. Debouck, 1994.Observations on wild and weedy forms of common bean in Oaxaca, Mexico. Annu. Rept. Bean Improvement Coop. 37: 137-138.

    Google Scholar 

  2. Adams, M.W. & G.B. Martin, 1988. Genetic structure of bean landraces in Malawi. In: P. Gepts (ed.), Genetic resources of Phaseolus beans, pp. 163-184, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  3. Anonymous, 1988. Suelos y bosques de Colombia. Ministerio de Hacienda y Credito Público. Instituto Geográfico Agustín Codazzi, Bogotá, D.E., Colombia. 135 pp.

  4. Bannerot, H. & D.G. Debouck, 1992. L'importance de la double domestication pour l'amélioration du haricot commun (Phaseolus vulgaris). In: Complexes d'espèces, flux de gènes et ressources génétiques des plantes. Colloque international en hommage `a Jean Pernès, pp. 495-506, Publications du Bureau des Ressources Génétiques. Diffusion Lavoisier, Paris, France.

    Google Scholar 

  5. Bellon, M.A. & S.B. Brush, 1994. Keepers of maize in Chiapas, Mexico. Econ. Bot. 48: 196-209.

    Google Scholar 

  6. Bliss, F.A. & J.W.S. Brown, 1983. Breeding common bean for improved quantity and quality of seed protein. In: J. Janick (ed.), Plant breeding reviews, pp. 59-102, AVI Publishers, Westport, Connecticut, USA.

    Google Scholar 

  7. Brown, J.W.S., J.R. McFerson, F.A. Bliss & T.C. Hall, 1982. Genetic divergence among commercial classes of Phaseolus vulgaris in relation to phaseolin pattern. HortScience 17: 752-754.

    Google Scholar 

  8. Brunner, B.R. & J.S. Beaver, 1989. Estimation of out crossing of the common bean in Puerto Rico. HortScience 24: 669-671.

    Google Scholar 

  9. Brush, S.B., 1991. A farmer-based approach to conserving crop germplasm. Econ. Bot. 45: 153-165.

    Google Scholar 

  10. Bukasov, S. M. 1930. The cultivated plants of Mexico, Guatemala and Colombia. Bulletin of Applied Botany, Genetics and Plant Breeding (Leningrad) Supplement 47: 1-553.

    Google Scholar 

  11. Debouck, D.G., 1988a. Phaseolus germplasm exploration. In: P. Gepts (ed.), Genetic resources of Phaseolus beans, pp. 3-29, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  12. Debouck, D.G., 1988b. Phaseolus germplasm collection in Central and Eastern Guatemala. Unpublished original report deposited at the International Union for Conservation of Nature and Natural Resources, Gland, Switzerland.

  13. Debouck, D.G., 1990. Wild beans as a food resource in the Andes. Annu. Rept. Bean Improvement Coop. 33: 102-103.

    Google Scholar 

  14. Debouck, D.G., 1994. Germplasm exploration for the genera Capsicum and Phaseolus in south central Bolivia. Unpublished original report deposited at the Centro Internacional de Agricultura Tropical, Cali, Colombia.

  15. Debouck, D.G., 1995. Germplasm exploration for the genera Manihot and Phaseolus in western and central Guatemala. Unpublished original report deposited at the Centro Internacional de Agricultura Tropical, Cali, Colombia.

  16. Debouck, D.G., R. Araya Villalobos, R.A. Ocampo Sánchez & W.G. González Ugalde, 1989a. Collecting Phaseolus in Costa Rica. FAO/IBPGR Plant Genetic Resources Newsl. 78/79: 4

    Google Scholar 

  17. Debouck, D.G., R. Castillo & J. Tohme, 1989b. Observations on little-known Phaseolus germplasm of Ecuador. FAO/IBPGR Plant Genetic Resources Newsl. 80: 15-21.

    Google Scholar 

  18. Debouck, D.G., M. Gamarra Flores, V. Ortiz Arriola & J. Tohme, 1989c. Presence of a wild-weed-crop complex in Phaseolus vulgaris L. in Peru? Annu. Rept. Bean Improvement Coop. 32: 64-65.

    Google Scholar 

  19. Debouck, D.G., J.H. Liñan Jara, A. Campana Sierra & J.H. De la Cruz Rojas, 1987. Observations on the domestication of Phaseolus lunatus L. FAO/IBPGR Plant Genetic Resources Newsl. 70: 26-32.

    Google Scholar 

  20. Debouck, D.G. & J. Tohme, 1989. Implications for bean breeders of studies on the origins of common beans, Phaseolus vulgaris L. In: S. Beebe (ed.), Current topics in breeding of common bean, pp. 3-42, Centro Internacional de Agricultura Tropical, Cali, Colombia.

    Google Scholar 

  21. Debouck, D.G., O. Toro, O.M. Paredes, W.C. Johnson & P. Gepts, 1993. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ. Bot. 47: 408-423.

    Google Scholar 

  22. Delgado Salinas, A., A. Bonet & P. Gepts, 1988. The wild relative of Phaseolus vulgaris in Middle America. In: P.Gepts, (ed.), Genetic resources of Phaseolus beans, pp. 163-184, Kluwer Academic Publishers, Dordrecht, Hol

    Google Scholar 

  23. Evans, A.M., 1980. Structure, variation, evolution, and classification in Phaseolus. In: R.J. Summerfield & A.H. Bunting (eds.), Advances in legume science, pp. 337-347, Royal Botanic Gardens, Kew, England.

    Google Scholar 

  24. Finke, M.L.,D.P. Coyne & J.R. Steadman, 1986. The inheritance and association of resistance to rust, common bacterial blight, plant habit and foliar abnormalities in Phaseolus vulgaris L. Euphytica 35: 969-982.

    Google Scholar 

  25. Frère, M., J.Q. Rijks & J. Rea, 1975. Estudio agroclimatológico de la zona andina. Food and Agriculture Organization of the United Nations, Rome, Italy. 375 pp.

  26. Gepts, P., 1988a. A middle American and an Andean common bean gene pool. In: P. Gepts (ed.), Genetic Resources of Phaseolus Beans, pp. 375-390, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  27. Gepts, P., 1988b. Phaseolin as an evolutionary marker. In: P. Gepts (ed.), Genetic resources of Phaseolus beans, pp. 215-241, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  28. Gepts, P., 1993. The use of molecular and biochemical markers in crop evolution studies. In: M.K. Hecht (ed.), Evolutionary Biology. Vol. 27, pp. 51-94, Plenum Press, New York, USA.

    Google Scholar 

  29. Gepts, P. & F.A. Bliss, 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40: 469-478.

    Google Scholar 

  30. Gepts, P. & D.G. Debouck, 1991. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: A. van Schoonhoven & O. Voysest (eds.), Common beans: research for crop improvement, pp. 7-53, Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom.

    Google Scholar 

  31. Gepts, P., K. Kmiecik, P. Pereira & F.A. Bliss, 1988. Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. 1. The Americas. Econ. Bot. 42: 73-85.

    Google Scholar 

  32. Gepts, P., T.C. Osborn, K. Rashka & F.A. Bliss, 1986. Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication. Econ. Bot. 40: 451-468.

    Google Scholar 

  33. Harlan, J.R., 1992. Crops and Man, second edition. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin, USA. 284 pp.

  34. Heiser, C.B., 1973. Introgression re-examined. Bot. Rev. 39: 347-366.

    Google Scholar 

  35. Johns, T., 1990.With bitter herbs they shall eat it. Chemical ecology and the origins of human diet and medicine. University of Arizona Press, Tucson, Arizona, USA. 356 pp.

    Google Scholar 

  36. Johns, T., Z. Huamán, C. Ochoa & P.E. Schmiediche, 1987. Relationships among wild, weed, and cultivated potatoes in the Solanum x anjuihuiri complex. Syst. Bot. 12: 541-552.

    Google Scholar 

  37. Johnson, A.M., 1976. The climate of Peru, Bolivia and Ecuador. In: W. Schwerdtfeger (ed.), Climates of Central and South America. pp. 147-218, Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.

    Google Scholar 

  38. Kaplan, L., 1994. Accelerator mass spectrometry dates and the antiquity of Phaseolus cultivation. Annu. Rept. Bean Improvement Coop. 37: 131-132.

    Google Scholar 

  39. Kaplan, L. & L.N. Kaplan, 1988. Phaseolus in archaeology. In: P. Gepts (ed.), Genetic resources of Phaseolus beans, pp. 125-142, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  40. Khairallah, M.M., M.W. Adams & B.B. Sears, 1990. Mitochondrial DNA polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor. Appl. Genet. 80: 753-761.

    Google Scholar 

  41. Khairallah, M.M., B.B. Sears & M.W. Adams, 1992. Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: insights on the domestication of the common bean. Theor. Appl. Genet. 84: 915-922.

    Google Scholar 

  42. Kirkpatrick, K.J. & H.D. Wilson, 1988. Interspecific gene flow in Cucurbita: C. texana vs. C. pepo. Amer. J. Bot. 75: 519-527.

    Google Scholar 

  43. Koenig, R. & P. Gepts, 1989. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78: 809-817.

    Google Scholar 

  44. Koenig, R.L., S.P. Singh & P. Gepts, 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44: 50-60.

    Google Scholar 

  45. Koinange, E.M.K. & P. Gepts, 1992. Hybrid weakness in wildPhaseolus vulgaris L. J. Hered. 83: 135-139.

    Google Scholar 

  46. Kornegay, J.L. & C. Cardona, 1991. Inheritance of resistance to Acanthoscelides obtectus in a wild common bean accession crossed to commercial bean cultivars. Euphytica 52: 103-111.

    Google Scholar 

  47. Kornegay, J.L., C. Cardona & C.E. Posso, 1993. Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Science 33: 589-594.

    Google Scholar 

  48. Lara, J., 1991. Diccionario Español-Quechua. Editorial Los Amigos del Libro, Werner Guttentag, Cochabamba, Bolivia.

    Google Scholar 

  49. Lareo, L.R., A.V. González, E. Barona & S. Beebe, 1993. Fast and reliable one and two-dimensional electrophoretic parameters for phaseolin type identification. Annu. Rept. Bean Improvement Coop. 36: 8-9.

    Google Scholar 

  50. Leakey, C.L.A., 1988. Genotypic and phenotypic markers in common bean. In: P. Gepts (ed.), Genetic resources of Phaseolus beans, pp. 245-327,Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  51. Martin, G. B. & M.W. Adams, 1987. Landraces of Phaseolus vulgaris (Fabaceae) in northern Malawi. 2. Generation and maintenance of variability.Econ. Bot. 41: 204-215.

    Google Scholar 

  52. McNeish, R.S., 1977. The beginning of agriculture in central Peru. In: C.A. Reed (ed.), Origins of agriculture, pp. 753-801, Mouton Publishers, The Hague, Paris.

    Google Scholar 

  53. Nodari, R.O., E.M.K. Koinange, J.D. Kelly & P. Gepts, 1992. Towards an integrated linkage map of common bean. 1. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor. Appl. Genet. 84: 186-192.

    Google Scholar 

  54. Oldfield, M.L. & J.B. Alcorn, 1987. Conservation of traditional agroecosystems. BioScience 37: 199-208.

    Google Scholar 

  55. Paredes, O.M. & P. Gepts, 1995. Extensive introgression of Middle American germplasm into Chilean common bean cultivars. Genet. Resources & Crop Evol. 42: 29-41.

    Google Scholar 

  56. Pernès, J. & M. Lourd, 1984. Organisation des complexes d'espèces. In: J. Pernès (ed.), Gestion des ressources génétiques des plantes. Tome 2: Manuel, pp. 5-106, Agence de Coopération Culturelle et Technique, Paris, France.

    Google Scholar 

  57. Pickersgill, B., 1971. Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25: 683-691.

    Google Scholar 

  58. Prescott-Allen, R. & C. Prescott-Allen, 1982. The case for in situ conservation of crop genetic resources. Nature & Resources 18: 15-20.

    Google Scholar 

  59. Shii, C.T., M.C. Mok, S.R. Temple & D.W.S. Mok. 1980. Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L. J. Hered. 71: 218-222.

    Google Scholar 

  60. Singh, S.P., 1991. Bean genetics. In: A. van Schoonhoven & O. Voysest (eds.), Common beans: research for crop improvement, pp. 199-286, Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom.

    Google Scholar 

  61. Singh, S.P., P. Gepts & D.G. Debouck, 1991a. Races of common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 45: 379-396.

    Google Scholar 

  62. Singh, S.P. & J. A. Gutiérrez, 1984. Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33: 337-345.

    Google Scholar 

  63. Singh, S.P., R. Nodari & P. Gepts, 1991b. Genetic diversity in cultivated common bean: I. Allozymes. Crop Science 31: 19-23.

    Google Scholar 

  64. Small, E., 1984. Hybridization in the domesticated-weed-wild complex. In: W.F. Grant (ed.), Plant biosystematics, pp. 193-210, Academic Press, San Diego, California, USA.

    Google Scholar 

  65. Toro, O., J. Tohme & D.G. Debouck, 1990. Wild bean (Phaseolus vulgaris L.): description and distribution. Centro Internacional de Agricultura Tropical, Cali, Colombia. 106 pp.

    Google Scholar 

  66. Towle, M.A., 1961. The ethnobotany of pre-Columbian Peru. Aldine Publishing Company, Chicago, USA. 180 pp.

    Google Scholar 

  67. Triana, B., M. Iwanaga, H. Rubiano & M. Andrade, 1993. Astudy of allogamy in wild Phaseolus vulgaris. Annu. Rept. Bean Improvement Coop. 36: 20-21.

    Google Scholar 

  68. Vargas, J., J. Tohme & D.G. Debouck, 1990. Common bean domestication in the southern Andes. Annu. Rept. Bean Improvement Coop. 33: 104-105.

    Google Scholar 

  69. Voysest, O., 1983.Variedades de frijol enAméricaLatina y su origen. Centro Internacional de Agricultura Tropical, Cali, Colombia. 87 pp.

    Google Scholar 

  70. Weberbauer, A., 1945. El mundo vegetal de los Andes peruanos. Ministerio de Agricultura, Estación Experimental Agrícola de La Molina, Lima, Peru. 776 pp.

    Google Scholar 

  71. Wells, W.C., W.H. Isom & J.G. Waines, 1988. Outcrossing rates of six common bean lines. Crop Science 28: 177-178.

    Google Scholar 

  72. Wilkes, H.G., 1977. Hybridization of maize and teosinte, in Mexico and Guatemala and the improvement of maize. Econ. Bot. 31: 254-293.

    Google Scholar 

  73. Wilson, H.D., 1990. Gene flow in squash species. Bioscience 40: 449-455.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beebe, S., Toro Ch, O., Gonza´lez, A.V. et al. Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genetic Resources and Crop Evolution 44, 73–91 (1997). https://doi.org/10.1023/A:1008621632680

Download citation

  • electrophoresis
  • gene flow
  • in situ conservation
  • phaseolin
  • seed storage proteins