Climatic Change

, Volume 40, Issue 1, pp 135–162 | Cite as

CO2 Mitigation by Agriculture: An Overview

  • Keith Paustian
  • C. Vernon Cole
  • Dieter Sauerbeck
  • Neil Sampson


Agriculture currently contributes significantly to the increase of CO2 in the atmosphere, primarily through the conversion of native ecosystems to agricultural uses in the tropics. Yet there are major opportunities for mitigation of CO2 and other greenhouse gas emissions through changes in the use and management of agricultural lands. Agricultural mitigation options can be broadly divided into two categories: (I) strategies to maintain and increase stocks of organic C in soils (and biomass), and (ii) reductions in fossil C consumption, including reduced emissions by the agricultural sector itself and through agricultural production of biofuels to substitute for fossil fuels.

Reducing the conversion of new land to agriculture in the tropics could substantially reduce CO2 emissions, but this option faces several difficult issues including population increase, land tenure and other socio-political factors in developing countries. The most significant opportunities for reducing tropical land conversions are in the humid tropics and in tropical wetlands. An important linkage is to improve the productivity and sustainability of existing agricultural lands in these regions.

Globally, we estimate potential agricultural CO2 mitigation through soil C sequestration to be 0.4-0.9 Pg C y-1, through better management of existing agricultural soils, restoration of degraded lands, permanent "set-asides" of surplus agricultural lands in temperate developed countries and restoration of 10-20% of former wetlands now being used for agriculture. However, soils have a finite capacity to store additional C and therefore any increases in C stocks following changes in management would be largely realized within 50-100 years.

Mitigation potential through reducing direct agricultural emissions is modest, 0.01-0.05 Pg C y-1. However, the potential to offset fossil C consumption through the use of biofuels produced by agriculture is substantial, 0.5-1.6 Pg C y-1, mainly through the production of dedicated biofuel crops with a smaller contribution (0.2-0.3 Pg C y-1) from crop residues.

Many agricultural mitigation options represent "win-win" situations, in that there are important side benefits, in addition to CO2 mitigation, that could be achieved, e.g. improved soil fertility with higher soil organic matter, protection of lands poorly suited for permanent agriculture, cost saving for fossil fuel inputs and diversification of agricultural production (e.g. biofuels). However, the needs for global food production and farmer/societal acceptability suggest that mitigation technologies should conform to: (I) the enhancement of agricultural production levels in parts of the world where food production and population demand are in delicate balance and (ii) the accrual of additional benefits to the farmer (e.g., reduced labor, reduced or more efficient use of inputs) and society at large.

C-sequestration soil C biofuels agriculture mitigation potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agboola, A.A.: 1981, ‘The effects of different soil tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria’, Agron. J. 73, 247–251.Google Scholar
  2. Aina, P.O.: 1979, ‘Soil changes resulting from long-term management practices in western Nigeria’, Soil Sci. Soc. Am. J. 43, 173–177.Google Scholar
  3. Allen, J.C.: 1985, ‘Soil response to forest clearing in the United States and the Tropics: Geological and biological factors’, Biotropica 17, 15–27.Google Scholar
  4. Allison, F.E.: 1973, Soil organic matter and its role in crop production. Developments in Soil Science 3, Elsevier, Amsterdam-London-New York.Google Scholar
  5. Armentano, T.V.: 1980, ‘Drainage of organic soils as a factor in the world carbon cycle’, Bioscience 30, 825–830.Google Scholar
  6. Armentano, T.V., and Menges, E.S.: 1986, ‘Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone’, Ecology 74, 755–774.Google Scholar
  7. Anderson, D.W., and Coleman, D.C.: 1985, ‘The dynamics of organic matter in grassland soils’, J. Soil Water Conserv. 40, 211–216.Google Scholar
  8. Balesdent, J., Mariotti, A., and Boisgontier, D.: 1990, ‘Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields’, J. Soil Sci. 41, 587–591.Google Scholar
  9. Betters, D., Wright, L.L., and Couto, L.: 1992, ‘Short rotation woody crop plantations in Brazil and the United States’, Biomass Bioenergy 1, 305–316.CrossRefGoogle Scholar
  10. Biederbeck, V.O., Campbell, C.A., Bowren, K.E., Schnitzer, M., and McIver, R.N.: 1980, ‘Effect of burning cercal straw on soil properties and grain yields in Saskatchewan’, Soil Sci. Soc. Am. J. 44, 103–111.Google Scholar
  11. Boonchee, S., and Anecksamphant, C.: 1993, ‘Sustaining soil organic matter for upland rice production in northern Thailand’, in Mulongoy, K. and Merckx, R. (eds.), Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, John Wiley and Sons, Chichester, U.K., pp. 155–161.Google Scholar
  12. Bouwman, A.F.: 1990, ‘Global distribution of the major soils and land cover types’, in Bouwman, A.F. (ed.) Soils and The Greenhouse Effect, John Wiley and Sons, Chichester, U.K., pp. 47–59.Google Scholar
  13. Burke, I.C., Lauenroth, W.K., and Coffin, D.P.: 1995, ‘Recovery of soil organic matter and N mineralization in semiarid grasslands: Implications for the Conservation Reserve Program’, Ecol. Appl. 5, 793–801.Google Scholar
  14. Campbell, C.A., Zentner, R.P., Janzen, H.H., and Bowren, K.E.: 1990, Crop rotation studies on the Canadian prairies, (available from Research Branch Agriculture Canada, Publication 1841/E, Ottawa, Ontario), 133 pp.Google Scholar
  15. Campbell, C.A., Lafond, G.P., Zentner, R.P., and Biederbeck, V.O.: 1991, ‘Influence of fertilizer and straw baling on soil organic matter in a thin Black Chernozem in western Canada’, Soil Biol. Biochem. 23, 443–446.CrossRefGoogle Scholar
  16. CAST; 1992, ‘Preparing U.S. agriculture for global climate change’, Task Force Report. No. 119. P.E. Waggoner, Chair. Council for Agricultural Science and Technology. Ames, IA, USA, 96 pp.Google Scholar
  17. Cerri, C.C., Volkoff, B., and Andreaux, F.: 1991, ‘Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus’, Forest Ecol. Manage 38, 247–257.CrossRefGoogle Scholar
  18. Chan, K.Y., Roberts, W.P., and Heenan, D.P.: 1992, ‘Organic carbon and associated soil properties of a red earth after 10 years of rotation under different stubble and tillage practices’, Aust. J. Soil Res. 30, 71–83.Google Scholar
  19. Clement, C.R., and Williams, T.E.: 1964, ‘Leys and soil organic matter I. The accumulation of organic carbon in soils under different leys’, J. Agric. Sci. 63, 377–383.Google Scholar
  20. Cole, C.V., Flach, K., Lee, J., Sauerbeck, D., and Stewart, B.: 1993, ‘Agricultural sources and sinks of carbon’, Water. Air, Soil Pollut. 70, 111–122.Google Scholar
  21. Cole, C.V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N., Sauerbeck, D., Dumanski, J., Duxbury, J., Freney, J., Gupta, R., Heinemeyer, O., Kolchugina, T., Lee, J., Paustian, K., Powlson, D., Sampson, N., Tiessen, H., van Noordwijk, M., and Zhao, Q.: 1996, ‘Chapter 23. Agricultural Options for Mitigation of Greenhouse Gas Emissions’, in Watson, R.T., Zinyowera, M. and Moss, R.H. (eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change. Scientific-Technical Analyses. IPCC Working Group II., Cambridge Univ. Press, Cambridge, U.K., pp. 745–771.Google Scholar
  22. Darmstadter, J.: 1993, ‘Climate change impacts on the energy sector and possible adjustments in the MINK region’, in Rosenberg, R.J. (ed.), Towards an integrated impact assessment of climate change; the MINK study, Paper 5, Climat. Change 24, 117–129.Google Scholar
  23. Davidson, E.A., and Ackerman, I.L.: 1993, ‘Changes in soil carbon inventories following cultivation of previously untilled soils’, Biogeochemistry 20, 161–164.Google Scholar
  24. Detwiler, R.P.: 1986, ‘Land use change and the global carbon cycle: The role of tropical soils’, Biogeochemistry 2, 67–93.Google Scholar
  25. Dick, W.A., Edwards, W.M., and McCoy, E.L.: 1997, ‘Continuous application of no-tillage to Ohio soils: Changes in crop yields and organic matter-related soil properties’, in Paul, E.A., Paustian, K., Elliott, E.T., and Cole, C.V. (eds.), Soil organic matter in temperate agroecosystems; Long-term experiments of North America, CRC/Lewis Publishers, Boca Raton, FL, USA, pp. 171–198.Google Scholar
  26. Dormaar, J.F., Pittman, U.J., and Spratt, E.D.: 1979, ‘Burning crop residues: Effect on selected soil characteristics and long-term wheat yields’, Can. J. Soil Sci. 59, 79–86.Google Scholar
  27. Dormaar, J.F., and Sauerbeck, D.: 1983, ‘Seasonal effects on photoassimilated carbon-14 in the root system of blue grama and associated soil organic matter’, Soil Biol. Biochem. 15, 475–479.CrossRefGoogle Scholar
  28. Dormaar, J.F., and Smoliak, S.: 1985, ‘Recovery of vegetative cover and soil organic matter during revegetation of abandoned farmland in a semi-arid climate’, J. Range Manage. 38, 487–491.Google Scholar
  29. Eckert, H., and Breitschuh, G.: 1984 ‘Kritische Umweltbelastungen Landwirtschaft (KUL) — Ermittlung und Bewertung der Energiebilanz’, Arch. Agron. and Soil Sci. 38, 337–348.Google Scholar
  30. Eden, M.J., Furley, P.A., McGregor, D.F.M., Milliken, W., and Ratter, J.A.: 1991, ‘Effect of forest clearance and burning on soil properties in northern Roraima, Brazil’, For. Ecol. Manage. 38, 283–290.Google Scholar
  31. Elliott, E.T.: 1986, ‘Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils’, Soil Sci. Soc. Am. J. 50, 627.Google Scholar
  32. Elwell, H.A.: 1993, ‘Development and adoption of conservation tillage practices in Zimbabwe’, in Soil Tillage in Africa: Needs and Challenges. Chapter 10, FAO Soils Bulletin 69, Rome, Italy, pp. 129–164.Google Scholar
  33. Enquete Commission: 1995, Protecting our Green Earth. How to Manage Global Warming through Environmentally Sound Farming and Preservation of the World's Forests. Economica Verlag, Bonn, 683 pp.Google Scholar
  34. Eswaran, H., van den Berg, E., and Reich, P.: 1993, ‘Organic carbon in soils of the world’, Soil Sci. Soc. Am. J. 57, 192–194.Google Scholar
  35. Feller, C.: 1993, ‘Organic inputs, soil organic matter and functional soil organic compartments in low-activity clay soils in tropical zones’, in Mulongoy, K. and Merckx, R. (eds.), Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, John Wiley and Sons, Chichester, U.K., pp. 77–88.Google Scholar
  36. Fearnside, P.M.: 1993, ‘Deforestation in Brazilian Amazonia: The effect of population and land tenure’, Ambio 22, 537–545.Google Scholar
  37. Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.L., Thomas, R.J., and Vera, R.R.: 1994, ‘Carbon storage by introduced deep rooted grasses in the South American savannas’, Nature 371, 236–238.CrossRefGoogle Scholar
  38. Flaig, H., and Mohr, H. (eds.): 1994, Energie aus Biomasse — eine Chance fuer die Landwirtschaft. Springer, Berlin-Heidelberg-New York, 376 pp.Google Scholar
  39. Frye, W.W.: 1984, ‘Energy requirement in no-tillage’, in Phillips, R.E. and Phillips, S.H. (eds.), No tillage agricultural principles and practices, Van Nostrand Reinhold, New York, 127–151.Google Scholar
  40. Gebhart, D.L., Johnson, H.B., Mayeux, H.S., and Polley, H.W.: 1995, ‘The CRP increases soil organic carbon’, J. Soil Water Conserv. 49, 488–492.Google Scholar
  41. Goldemberg, J., Monaco, L.C., and Macedo, I.C.: 1993, ‘The Brazilian fuel-alcohol program’, in Johansson, B.J., Kelly, H., Reddy, A.K.N., and Williams, R.H. (eds.), Renewable Energy: Sources for Fuels and Electricity, Island Press, Washington, D.C., pp. 841–863.Google Scholar
  42. Graef, M., Vellguth, G., Krahl, J., and Munack, A.: 1994, Fuel from Sugar Beet and Rape Seed Oil-Mass and Energy Balances for Evaluation, Proc. 8th European Conference on Biomass for Energy, Environment, Agriculture and Industry, 3–5 Oct. 1994, Vienna, Australia, pp. 1–4.Google Scholar
  43. Greenland, D.J.: 1995, ‘Land use and soil carbon in different agroecological zones’, in Lal, R., Kimble, J., Levine, E., and Stewart, B.A. (eds.), Soil Management and Greenhouse Effect, Advances in Soil Science, CRC/Lewis Publishers, Boca Raton, FL, USA, pp. 9–24.Google Scholar
  44. Gupta, R.K., and Rao, D.L.N.: 1994, ‘Potential of wastelands for sequestering carbon by reforestation’, Curr. Sci. 66, 378–380.Google Scholar
  45. Haas, G., Geier, U., Schulz, D.G., and Koepke, U.: 1995a, ‘Klimarelevanz des Agrarsektors der Bundesrepublik Deutschland: Reduzierung der Emission von Kohlendioxid’, Berichte ueber Landwirtschaft 73, 387–400.Google Scholar
  46. Haas, G., Geier, U., Schulz, D.G., and Koepke, U.: 1995b, ‘Verleich Konventioneller und Organischer Landbau — Teil I: Klimarelevante Kohlendioxid-Emission durch den Verbrauch fossiler Energie’, Berichte ueber Landwirtschaft 73, 401–415.Google Scholar
  47. Hall, D.O., Rosillo-Calle, F., Williams, R.H., and Woods, J.: 1993, ‘Biomass for energy supply prospects’, in Johansson, B.J., Kelly, H., Reddy, A.K.N., and Williams, R.H. (eds.), Renewables for Fuels and Electricity, Island Press, Washington, D.C., pp. 593–651.Google Scholar
  48. Hansson, A.C., and Andren, O.A.: 1986, ‘Below-ground plant production in a perennial grass ley (Festuca pratensis) assessed with different methods’, J. Appl. Ecol. 23, 656–666.Google Scholar
  49. Hassink, J., and Whitmore, A.P.: 1997, ‘A model of the physical protection of organic matter in soils’, Soil Sci. Soc. Am. J. 61, 131–139.Google Scholar
  50. Hauser, S., and Kang, B.T.: 1993, ‘Nutrient dynamics, maize yield and soil organic matter in alley cropping with Leucaena leueocephala’, in Mulongoy, K. and Merckx, R. (eds.), Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, John Wiley and Sons, Chichester, U.K., pp. 215–222.Google Scholar
  51. Havlin, J.L., and Kissel, D.E.: 1997, ‘Management effects on soil organic carbon and nitrogen in the east-central Great Plains of Kansas’, in Paul, E.A., Paustian, K., Elliott, E.T., and Cole, C.V. (eds.), Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, CRC Press, Boca Raton, pp. 381–386Google Scholar
  52. Haynes, R.J., Swift, R.S., and Stephen, R.C.: 1991, ‘Influence of mixed cropping rotations (pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils’, Soil & Tillage Res. 19, 77–81.Google Scholar
  53. Hendrix, P.F.: 1997, ‘Long-term parterns of plant production and soil carbon dynamics in a Georgia piedmont agroecosystem’, in Paul, E.A., Paustian, K., Elliott, E.T. and Cole, C.V. (eds.), Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, CRC Press, Boca Raton, pp. 235–245.Google Scholar
  54. Houghton, R.A., Hobbie, J.E., Melillo, J.M., Moore, B., Peterson, B.J., Shaver, G.R., and Woodwell, G.M.: 1983, ‘Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A nct release of CO2 to the atmosphere’, Ecol Monogr. 53, 235–262.Google Scholar
  55. Houghton, R.A., and Skole, D.L.: 1990, ‘Carbon’, in Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Matthews, J.T., and Meyer, W.B. (eds.), The Earth as Transformed by Human Action. Cambridge University Press, New York, pp. 393–408.Google Scholar
  56. Houghton, R.A.: 1994, ‘The worldwide extent of land-use change’, BioScience 44, 305–313.Google Scholar
  57. Inoue, T.: 1991, Soil improvement in corn cropping by long-term application of organic matter in ultisols of Thailand, in Soil Constraints on Sustainable Plant Production in the Tropics, pp. 174–185. Proceedings of the 24th International Symposturn on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14–16, 1990.Google Scholar
  58. Isermann, K., and Isermann, R.: 1995, ‘Present situation, demands, possible solutions and outlooks for a sustainable agriculture, human nutrition, waste and wastewater management before the background of nutrient balances within the EU’, in Barrage, A. and Edelmann, X. (eds.), R'95 Congress (Recovery/Recycling/Re-Integration), Proc. IV, Eidgen, Materialpruefungs — u. Forschungsanstalt (EMPA), Duebendorf, Switzerland, pp. 151–156.Google Scholar
  59. Ismail, I., Blevins, R.L., and Frye, W.W.: 1994, ‘Long-term no-tillage effects on soil properties and continuous corn yields’, Soil Sci. Soc. Am. J. 58, 193–196.Google Scholar
  60. Janzen, H.H.: 1987, ‘Soil organic matter characteristics after long-term cropping to various spring wheat rotations’, Can. J. Soil Sci. 67, 845–856.Google Scholar
  61. Jastrow, J.D.: 1996, ‘Soil aggregate formation and the accrual of particulate and mineral-associated organic matter’, Soil Biol. Biochem. 28, 665–676.CrossRefGoogle Scholar
  62. Jenkinson, D.S.: 1971, ‘The accumulation of organic matter in soil left uncultivated’. Rothamsted Exp. Sta. Ann. Rep. for 1970, Part 2, pp. 113–137.Google Scholar
  63. Jenkinson, D.S., and Rayner, J.H.: 1977, ‘The turnover of soil organic matter in some of the Rothamsted classical experiments’, Soil Sci. 123, 298–305.Google Scholar
  64. Kaltschmitt, M., and Becher, S.: 1994, ‘Biomassenutzung in Deutschland — Stand und Perspektiven’, in BMELF (ed.), Termische Nutzung von Biomasse, Schrifienreihe “Nachwachsende Rohstoffe”, Vol. 2, Landwirtschaftsverlag GmbH, Muenster-Hiltrup, Germany, pp. 9–25.Google Scholar
  65. Kern, J.S., and Johnson, M.G.: 1993, ‘Conservation tillage impacts on national soil and atmospheric carbon levels’, Soil Sci. Soc. Am. J. 57, 200–210.Google Scholar
  66. Kleinhanss, W.: 1993, ‘Pflanzenoele als Treibstoff — Erzeugung, Nutzung, Perspektiven’, in Flaig, H. and Mohr, H. (eds.), Energie aus Biomasse — eine Chance fuer die Landwirtschaft, Springer, Berlin-Heidelberg-New York.Google Scholar
  67. Koepf, H., Kaffka, S., and Sattler, F.: 1988, Naehrstoffbilanz und Energiebedarf im landwirtschaftlichen Betriebsorganismus, Verl. Freies Geistesleben, Stuttgart, Germany, 62 p.Google Scholar
  68. Kolchugina, T.P., and Vinson, T.S.: 1996, ‘Management options to conserve and sequester carbon in the agricultural sector of the former Soviet Union’, Mitigation and Adaptation Strategies 1, 1–22.Google Scholar
  69. Kooistra, M.J., Lebbink G., and Brussaard, L.: 1989, ‘The Dutch programme on soil ecology of arable farming systems. 2. Geogenesis, agricultural history, field site characteristics and present farming systems at the Lovinkhoeve Experimental Farm’, Agric. Ecosyst. & Environ. 27, 361–387.Google Scholar
  70. Lal, R., De Vleeschauwer, D., and Nganje, R.M.: 1980. ‘Changes in properties of a newly cleared tropical Alfisol as affected by mulching’, Soil Sci. Soc. Am. J. 44, 827–833.Google Scholar
  71. Lal, R.: 1986, Soil surface management in the tropics for intensive land use and high and sustained production, Adv. Soil Sci. Vol. 5, Springer, New York, Inc., pp 1–109.Google Scholar
  72. Lal, R.: 1995, ‘Global soil erosion by water and carbon dynamics’, in Lal, R., Kimble, J., Levine, E., Stewart, B.A. (eds.), Soils and Global Change, CRC/Lewis Publishers, Boca Raton, FL, USA, pp. 131–142.Google Scholar
  73. Lal, R., and Logan, T.J.: 1995, ‘Agricultural activities and greenhouse gas emissions from soils of the tropics’, in Lal, R., Kimble, J., Levine, E., Stewart, B.A. (eds.), Soil Management and Greenhouse Effect, CRC/Lewis Publishers, Boca Raton, FL, USA, pp. 293–307.Google Scholar
  74. Larson, W.E., Clapp, C.E., Pierre, W.H., and Morachan, Y.B.: 1972. Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus, and sulfur. Agronomy Journal 64, 204.Google Scholar
  75. Lee, J.J., Phillips, D.L., and Liu, R.: 1993, ‘The effect of trends in tillage practices on erosion and carbon content of soils in the US corn belt’, Water, Air, Soil Pollut. 70, 389–401.Google Scholar
  76. Leible, L., and Wintzer, D.: 1993, ‘Energiebilanzen bei nachwachsenden Energietraegern’, in Flaig, H. and Mohr, H. (eds.), Energie aus Biomasse — eine Chance fuer die Landwirtschaft, Springer, Berlin-Heidelberg-New York, pp. 67–83.Google Scholar
  77. Li, Z., and Zhao, Q.: 1998, ‘Carbon dioxide fluxes and potential mitigation in agriculture and forestry of tropical and subtropical China’, Climate Change (this volume)Google Scholar
  78. Lugo, A.E., Sanchez, M.J., and Brown, S.: 1986, ‘Land use and organic carbon content of some subtropical soils’, Plant Soil 96, 185–196.Google Scholar
  79. Mann, L.K.: 1986, ‘Changes in soil carbon storage after cultivation’, Soil Sci. 142, 279–288.Google Scholar
  80. Marland, G., and Turhollow, A.F.: 1991, ‘CO2 Emissions from the production and combustion of fuel ethanol from corn’, Energy 16, 1307–1316.CrossRefGoogle Scholar
  81. Melillo, J.M., Aber, J.D., and Muratore, J.F.: 1982, ‘Nitrogen and lignin control of hardwood leaf litter decomposition dynamics’, Ecology 63, 621–626.Google Scholar
  82. Moster, A.R., Duxbury, J.M., Freney, J.R., Heinerneyer, O., and Minami, K.: 1998a, ‘Assessing and mitigating N2O emissions from agricultural soils’, Climate Change, (this volume)Google Scholar
  83. Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K., and Johnson, D.E.: 1998b, ‘Mitigating agricultural emissions of methane’, Climate Change, (this volume).Google Scholar
  84. Nguyen, M.L., and Haynes, R.J.: 1995, ‘Energy and labour efficiency for three pairs of conventional and alternative mixed cropping (pasture-arable) farms in Canterbury, New Zealand’, Agric. Ecosyst. & Environ. 52, 163–172.Google Scholar
  85. OECD/OCDE: 1991, Estimation of Greenhouse Gas Emissions and Sinks. Final report from the OECD Experts Meeting, 18–21 Feb., 1991, Prepared for Intergovernmental Panel on Climate Change, Revised August, 1991.Google Scholar
  86. Oldeman, L.R., van Engelen, V.W.P., and Pulles, J.H.M.: 1990, ‘The extent of human-induced soil degradation’, in Oldeman, L.R., Hakkeling, R.T.A., and Sombroek, W.G. (eds.), World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note, International Soil Reference and Information Centre, Wageningen, The Netherlands.Google Scholar
  87. Paul, E.A., Paustian, K., Elliott, E.T., and Cole, C.V.: 1997, Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, CRC Press, Boca Raton, FL, USA, pp. 414.Google Scholar
  88. Paustian, K., Parton, W.J., and Persson, J.: 1992, Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots, Soil Science Society of America Journal, 56, 476–488.Google Scholar
  89. Paustian, K., Collins, H.P., and Paul, E.A.: 1997, ‘Management controls on soil carbon’, in Paul, E.A., Paustian, K., Elliott, E.T., and Cole, C.V. (eds.), Soil organic matter in temperate agroecosystems, Long-term experiments of North America, CRC/Lewis Publishers, Boca Raton, FL, USA, pp. 15–49.Google Scholar
  90. Pimentel, D., Dazhong, W., and Giampietro, M.: 1990, ‘Technological changes in energy use in U.S. agricultural production’, in Gliessman, S.R. (ed.), Agroecology researching the ecological basis for sustainable agriculture, Ecological Studies: Analysis and Synthesis (USA), Vol. 78, Springer, New York, pp. 305–321.Google Scholar
  91. Post, W.M., Peng, T.-H., Emanuel, W.R., King, A.W., Dale, V.H., and DeAngelis, D.L.: 1990, ‘The global carbon cycle’, Am. Sci. 78, 310–326.Google Scholar
  92. Prasad, R., and Power, J.F.: 1991, ‘Crop residue management’, Advances in Soil Science 15, 205–251.Google Scholar
  93. Rasmussen, P.E., Allmaras, R.R., Rohde, C.R., and Roager, N.C., Jr.: 1980, ‘Crop residue influences on soil carbon and nitrogen in a wheat-fallow system’, Soil Science Society of America Journal 44, 596–600.Google Scholar
  94. Reinhardt, G.A.: 1993, Energie und CO2-Bilanzierung nachwachsender Rohstoffe, Theoretische Grundlagen und Fallstudie Raps. Vieweg, Wiesbaden.Google Scholar
  95. Reicosky, D.C., and Lindstrom, M.J.: 1995, ‘Impact of fall tillage on short-term carbon dioxide flux’, in Lal, R., Kimble, J., Levine, E. and Stewart, B.A. (eds.), Soils and Global Change: Advances in Soil Science, CRC, Lewis Publishers, Boca Raton, pp. 440.Google Scholar
  96. Saffigna, P.G., Powlson, D.S., Brookes, P.C., and Thomas, G.A.: 1989, ‘Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian vertisol’, Soil Biol. and Biochem. 21, 759–765.CrossRefGoogle Scholar
  97. Sampson, R.N., Wright, L.L., Winjam, J.K., Kinsman, J.D., Benneman, J., Kursten, E., and Scurlock, J.M.O.: 1993, ‘Biomass management and energy’, in Wisniewski, J. and Sampson, R.N. (eds.), Terrestrial Biospheric Carbon Fluxes: Quantification of Sinks and Sources of CO2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 139–162.Google Scholar
  98. Sanchez, P.A., Palm, C.A., Szott, L.T., Cuevas, E., and Lal, R.: 1989, ‘Organic input management in tropical agroecosystems’, in Coleman, D.C., Oades, J.M., Uehara, G. (eds.), Dynamics of Soil Organic Matter in Tropical Ecosystems, Univ. Hawaii Press, Honolulu, pp. 125–152.Google Scholar
  99. Sanchez, P.A., Palm, C.A., and Smyth, T.J.: 1990, ‘Approaches to mitigate tropical deforestation by sustainable soil management practices’, in Scharpenseel, H.W., Schomaker, M., and Ayoub, A. (eds.), Soils on a Warmer Earth, Elsevier, Amsterdam, pp. 211–220.Google Scholar
  100. Sauerbeck, D.: 1992, ‘Funktionen und Bedeutung der Organischen Substanzen fur die Bodenfruchtbarkeit — ein Ueberlick.’ Bodennutzung und Bodenfruchtbarkeit, Vol. 4 Humushaushalt, Berichte ueber Landwirtschaft 206, 13–29.Google Scholar
  101. Sauerbeck, D.: 1993, ‘CO2 emissions from agriculture: sources and mitigation potentials’, Water, Atr, Soil Pollut. 70, 381–388.Google Scholar
  102. Sauerbeck, D.: 1994a, ‘Die Landwirtschaft als Verursacherin und Betroffene moeglicher Klimaveraendcrungcn’, in Bayrische Akademie der Wissenschaften (ed.), Klimaforschung in Bayern, Rundgespraeche der Kommission fuer Oekologie, Vol. 8, Verlg. F. Pfeil, Muenchen, pp. 151–168.Google Scholar
  103. Sauerbeck, D.: 1994b, ‘Nitrogen fertilization and nitrogen balance — environmental consequences and limitations’, in Mohr, H.U. and Muentz, K. (eds.), The terrestrial nitrogen cycle as influenced by man, Nova Acta Leopoldina, Halle 70, 441–447.Google Scholar
  104. Schwab, A.W., Bagby, M.O., and Freeman, B.: 1987, ‘Preparation and properties of diesel fuels from vegetable oils’, Fuels 66, 1372–1378.CrossRefGoogle Scholar
  105. Schimel, D.S., Enting, I.G., Heimann, M., Wigley, T.M.L., Raynaud, D., Alves, D., and Siegenthaler, U.: 1995, ‘CO2 and the carbon cycle’ in Houghton, J.J., Meiro Filro, L.G., Bruce, J., Lee, H., Callander, B.A., Haites, E., Harris, N., and Maskell, K. (eds.) Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge Univ. Press, Cambridge, U.K, pp. 35–71.Google Scholar
  106. Scurlock, J.M.O., Hall, D.O., House, J.I., and Howes, R.: 1993, ‘Utilizing Biomass Crops as an Energy Source: A European Perspective’, in Wisniewski, J. and Sampson, R.N. (eds.), Terrestrial Biospheric Carbon Fluxes: Quantification of Sinks and Sources of CO2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 499–518.Google Scholar
  107. Sidhu, A.S., and Sur, H.S.: 1993, ‘Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence’, Trop. Agric. (Trinidad) 70, 26–229.Google Scholar
  108. Sims, R.E.H.: 1990, ‘Tallow esters and vegetable oil as alternative diesel fuels — a review of the New Zealand programme’, Solar and Wind Technology 7, 31–36.CrossRefGoogle Scholar
  109. Smith, P., Glendining, M.J., Smith, J.U., and Powlson, D.S.: 1998, ‘Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming’, Global Change Biology (in press).Google Scholar
  110. Sombroek, W.G., Nachtergaele, F.O., and Hebel, A.: 1993, ‘Amounts, dynamics and sequestering of carbon in tropical and subtropical soils’, Ambio 22, 417–426.Google Scholar
  111. Sundquist, E.: 1993, ‘The global carbon dioxide budget’, Science 259, 934–941.Google Scholar
  112. Swift, M.J., and Sanchez, P.A.: 1984, ‘Biological management of tropical soil fertility for sustained productivity’, Nature Res. 20, 2–10.Google Scholar
  113. Tiessen, H., Feller, C., Sampaio, E.V.S.B., and Garin, P.: (1998), ‘Carbon sequestration and turnover in semiarid savannas and dry forest’, Climate Change (this volume).Google Scholar
  114. Tiessen, H., Cuevas, J.E., and Chacon, P.: 1994, ‘The role of soil organic matter stability in soil fertility and agricultural potential’, Nature 371, 783–785.CrossRefGoogle Scholar
  115. Tisdall, J.M., and Oades, J.M.: 1982, ‘Organic matter and water-stable aggregates in soils’, J. Soil Sci. 33, 141.Google Scholar
  116. Tyson, K.C., Roberts, D.H., Clement, C.R., and Garwood, E.A.: 1990, ‘Comparison of crop yields and soil conditions during 30 years under annual tillage or grazed pasture’, J. Agric. Sci. 115, 29–40.Google Scholar
  117. U.S. Government Executive Office: 1995, Economic Report of the President, U.S. Government Printing Office, Washington, D.C., pp. 407.Google Scholar
  118. van Heerwarden, K.: 1992, ‘Agriculture and the greenhouse effect’, Change II 17–20.Google Scholar
  119. van Noordwijk, M., Cerri, C., Woomer, P.L., Mugroho, K., and Bernoux, M.: 1997, ‘Soil carbon dynamics in the humid tropical forest zone’, Geoderma 79, 187–225.CrossRefGoogle Scholar
  120. Vellguth, G.: 1983, Performance of vegetable oils and their monoesters as fuels for diesel engines. Proc. Internat. Off-Highway Meeting & Exposition, Milwaukee, WI, Sept. 12–15, Soc. of Automotive Engineers, pp. 1–10.Google Scholar
  121. Weaver, P.L., Birdsey, R.A., and Lugo, A.E.: 1987, ‘Soil organic matter in secondary forests of Puerto Rico’, Biotropica 16, 17–23.Google Scholar
  122. Wilson, A.T.: 1978, ‘Pioneer agriculture explosion and CO2 levels in the atmosphere’, Nature 273, 40–41.Google Scholar
  123. Wood, B.J., and Conley, R.H.V.: 1991, The energy balance of oil palm cultivation. Proceedings 1991 PORIM Int. Palm Oil Conference, pp. 130–143.Google Scholar
  124. Woomer, P.L., Martin, A., Albrecht, A., Resek, D.V.S., and Scharpenseel, H.W.: 1994, ‘The importance and management of soil organic matter in the tropics’, in Woomer, P.L. and Swift, M.J. (eds.), The Biological Management of Tropical Soil Fertility, John Wiley and Sons, Chichester, U.K., pp. 47–80.Google Scholar
  125. Wright, L.L., and Hughes, E.: 1993, ‘U.S. carbon offset potential using biomass energy systems’, in Wisniewski, J. and Sampson, R.N. (eds.), Terrestrial Biospheric Carbon Fluxes: Quantification of Sinks and Sources of CO2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 483–498.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Keith Paustian
    • 1
  • C. Vernon Cole
    • 1
  • Dieter Sauerbeck
    • 2
  • Neil Sampson
    • 3
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.Institute of Plant Nutrition and Soil Science German Federal Research Centre of AgricultureBraunschweigGermany
  3. 3.American ForestsWashington, D.CUSA

Personalised recommendations