Cellulose

, Volume 10, Issue 4, pp 343–367 | Cite as

Film-Forming Aminocellulose Derivatives as Enzyme-Compatible Support Matrices for Biosensor Developments

  • P. Berlin
  • D. Klemm
  • A. Jung
  • H. Liebegott
  • R. Rieseler
  • J. Tiller
Article

Abstract

Based on 6(2)-O-tosyl celluloses and 6(2)-O-tosylcellulose derivatives, it has been possible to synthesize a novel soluble aminocellulose type, P-CH2-NH-(X)-NH2 (P=cellulose, (X)=alkylene, aryl, aralkylene or oligoamine) with diamine or oligoamine residues at C6 and solubilizing groups (S) such as acetate, benzoate, carbanilate, methoxy and/or tosylate groups at C2/C3 of the anhydroglucose unit (AGU). Depending on the nature and degree of substitution (DS) of (S), the aminocelluloses are soluble either in DMA and DMSO or in water. They all form transparent films from their solutions. In the case of water-soluble aminocelluloses, for example, an enzyme-specific pH value can be adjusted by protonation of the NH2 end groups at C6. The aminocelluloses apparently form aggregates (on a scale of nanostructures) according to a structure-inherent organization principle. The nanostructures could be imaged on the aminocellulose film surface by atomic force microscopy (AFM) in the form of characteristic topographic structures – as a result of the aggregation of the aminocellulose derivative chains and their interaction with the functionalized film support. In this way, structural and environment-induced factors influencing the nanostructure formation were found. The aminocellulose films can be covalently coupled with biomolecules by bifunctional reaction via NH2-reactive compounds. With the aid of analytically relevant enzymes, e.g. glucose oxidase (GOD), horseradish peroxidase (HRP) and others, it was found that the enzyme parameters can be modified by the interplay of the aminocellulose and coupling structures. A number of new bifunctional enzyme coupling reactions, e.g. via L-ascorbic acid or benzenedisulfonyl chlorides, forming amide or sulfonamide coupling structures led to efficient enzyme activities and long-term stabilities in the case of GOD and HRP coupling to PDA cellulosetosylate films.

Aminocellulose derivatives Atomic force microscopy Enzyme activity Enzyme coupling GOD HRP LOD Nanostructures Stability Thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Tcaza M., Kalisz H. M., Hecht H. J., Aumann K.-D., Schomburg D. and Sclimid R. D. 1995. The design of enzyme sensors based on the enzyme stricture. Biosens. Bioelectr. 10: 735–742.Google Scholar
  2. Arica MY. and Hasirci V. 1993. Glucose oxidase sandwiched between pHEMA layers: a continuous flow reactor application. Biomaterials 14: 809–816.PubMedGoogle Scholar
  3. Baimin A. V., Eremenko A. V., Sokolovslcij A. A., Chemov S. F. and Kurochkin TN. 1993. New catalytic properties of glucose oxi-dase in monomolecular films. Biotecimol. Appl. Biochem. 18: 369–376.Google Scholar
  4. Barthel H., Rosch L. and Weis J. 1996. Fumed silica production, properties and applications. In: Auner M. and Weis J. (eds), Organo Silicon Chemistry II-From Molecules to Materials. VCllVerlagsgesellschaft mbll, Weinheim, Geimany, pp. 76 ff.Google Scholar
  5. Becher J., Liebegott H., Berlin P. and Klemm D. 2003. Novel xylylene di-aminocellulose derivatives for enzyme immobiliza-tion. Cellulose (accepted for publication).Google Scholar
  6. Berlin P., Tiller J., Rieseler R. and Klemm D. 1998. Supramolekulare Erkeimungsstnikturen auf Cellulosebasis. Das Papier 52: 737–742.Google Scholar
  7. Berlin P., Klemm D., Tiller J. and Rieseler R. 2000. Feature-A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol. Chem. Phys. 201: 2070–2082.Google Scholar
  8. Berlin P., Tiller J. and Klemm D. 1997a. New aromatic amino-cellulose derivatives and process for their preparation. Patent EP 0 873 365 B1 (WO 97/25353), Forschungszentrum Jiilich GmbH. Chem. Abstr. 1997, 127, 150–332.Google Scholar
  9. Berlin P., Tffler J. and Klemm D. 1997a. New (bio)chemical reagent solid phases, process for their production and their applications. Patent EP 0 883 812 B1 (WO 97/25621), Forschungszentrum Jiilich GmbH. Chem. Abstr. 1997, 127, 133103.Google Scholar
  10. Berlin P., Tifier J. and Klemm D. 2002. (Bio)chemical reagent solid phases, process for their production and their applications. US Patent 6, 358, 754 B1, Forschungszentnim Jiilich GmbH.Google Scholar
  11. Bisswanger H. 1994. Enzymkinetik-Theorie mid Methoden. VCH Verlagsgemeinschaft mbll, Weinheim, Geimany.Google Scholar
  12. Braun D. and Meuret B. 1989. Benzyl-cellulose as thermoplastic synthetic substance. 1. Preparation and characterization. Das Papier 43: 688–693.Google Scholar
  13. Chang H. Y. and Bae Z.-U. 1997. Adenosine-modified electrodes for the determination of glucose without using an immobilized redox mediator. Anal. Lett. 30: 1981–1992.Google Scholar
  14. Chibatu I. 1978. Preparation of immobilized enzymes and microbial cells. Main entry under title: Immobilized enzymes, research and development. Kodanska Scientific Books, Tokyo, Japan and Halsted Press, New York.Google Scholar
  15. Comfort A. R., Albeit E. and Langer R. 1989a. Immobilized enzyme cellulose hollow fibers: immobilization of heparinase. Biotecimol. Bioeng. 34: 1366–1374.Google Scholar
  16. Comfoit A. R., Albeit E. and Langer R. 1989b. Immobilizedenzyme cellulose hollow fibers: II. kinetic analysis. Biotechnol. Bioeng. 34: 1374–1382.Google Scholar
  17. Corbett J. F. 1973. Role of m-difunctional benzene derivatives in oxidative hair dyeing. I. Reaction ith p-diamines. J. Soc. Cosmet. Chem. 24: 103–134.Google Scholar
  18. Dade J. V., Revol J.-F., Gail F. and Coffinet G. 1992. Characterization and supramolecular architecture of the cellu-lose-protein in the tunic of sea perch. Biol. Cell. 76: 87–96.Google Scholar
  19. Daly W. H. and Lee S. 1989. Peptide graft-copolymers from soluble 6-aminodeoxycellulose acetate. Abstr. Pap. Am. Chem. 5. 198: 52-Poly. September 10.Google Scholar
  20. Daly W. H. and Munir A. 1984. Aminopropylcellulose, synthesis and derivatization. J. Polym. Sci. Pol. Chem. 22: 975–984.Google Scholar
  21. Enmeus J. and Gorton L. 1993. Comparison between different inorganic supports for the immobilization of amyloglucosidase and alpha-amylase to be used in enzyme reactors in flow-injection systems. 2. Hydrolysis of glycogen. Anal. Chim. Acta 276: 319–328.Google Scholar
  22. Englebretsen D. R. and Harding D. R. K. 1992. Solid-phase peptide-synthesis on hydrophilic supports. 2. Studies using perloza beaded cellulose. Int. J. Protein Res. 40: 487–496.Google Scholar
  23. Englebretsen D. R. and Harding D. R. K. 1994. High-yield, directed immobilization of a peptide ligand onto a beaded cellulose sup-port. Pept. Res. 7: 322–326.PubMedGoogle Scholar
  24. Entcheva E. G. and Yotova L. K. 1994. Analytical application of membranes with covalently bound glucose oxidase. Anal. Chim. Acta 299: 171–177.Google Scholar
  25. Erler U., Misclinick P., Stein A. and Klemm D. 1992. Deteimination of the substituent patterns of cellulose methyl ethers by HPLC and GLC-comparison of methods. Polymer Bull. 29: 349–356.Google Scholar
  26. Frew J. E. and Hill H. A. 0. 1987a. Electrochemical biosensors. Anal. Chem. 59: A933.Google Scholar
  27. Frew J. E. and Hill H. A. 0. 1987b. Electron-transfer biosensors. Phil. Trans. R. Soc. London B 316: 95–106.Google Scholar
  28. Fultz M. L. and Durst R. A. 1982. Mediator compounds for the electrochemical study of biological redox systems: a compila-tion. Anal. Chim. Acta 140: 1–18.Google Scholar
  29. Gavlik J. and Tokar 0. 1989. CS 259 795. Chem. Abstr. 1990, 113, 8291.Google Scholar
  30. Gemeiner P. 1982. Aldehydic derivatives of bead cellulose-relationships between the matrix structure and function in immobilization of enzyme catalyzing hydrolysis of high mole-cular substrates. Biotecimol. Bioeng. 24: 2573–2582.Google Scholar
  31. Göpel W., Jones T. A., Kleitz M., Lundström J. and Seiyame T. 1992. Chemical and biochemical sensors, part II. In: Göpel W., Hesse J. and Zemel J. N. (eds.), Sensors-A CompreheisiveSurvey, Vol. 3. VCllVerlagsgesellschaft mbH, Weinheim, Geimany.Google Scholar
  32. Göpel W. and Ziegler Ch. 1992. Nanostructures Based on Molecular Materials, Molecular Electronic – Part I: Design of Molecular Functional Units. VCH Verlagsgesellschaft mbH, Weinheim, Geimany, pp. 9–75.Google Scholar
  33. Göpel W. 1994. New materials and transducers for chemical sen-sors. Sensors Actuators B 18–19: 1–21.Google Scholar
  34. Golub A. A., Zubenko Ad. and Zlimud B. V. 1996. 7-APTES mod-ified silica gels: the structure of the surface layer. J. Coll. Interface Sci. 179: 482–487.Google Scholar
  35. Gomez J. A. C., Erler U. and Klemm D. 1996. 4-Methoxy-substituted trityl groups in 6–0-protection of cellulose: Homogeneous synth-esis, characterization, detritylation. Macromol. Chem. Phys. 197: 953–964.Google Scholar
  36. Goncalves A. P. A., Martins M. B. F. and Cniz M. E. M. 1991. Analytical use of immobilized glucose oxidase-kinetic and operational studies. Appl. Biochem. Biotechnol. 27: 139–143.Google Scholar
  37. Gregg B. A. and Heller A. J. 1991. Redox polymer-films contairing enzymes. 2. Glucose-oxidase containing enzyme electrodes. J. Phys. Chem. 95: 5976–5980.Google Scholar
  38. Greenfield P. F., Kittrell J. R. and Laurence R. L. 1975. Inactivation of immobilized glucose oxidase by hydrogen peroxide. Anal. Biochem. 65: 109–124.PubMedGoogle Scholar
  39. Guilbault G. G. and de Olivera N. G. 1985. Immobilisation enzyme electrodes. In: Woodward J. (ed), Immobilised Cells and Enzymes-A Practical Approach. IRL Press Ltd., Oxford, UK, pp. 55–74.Google Scholar
  40. Gupta M. N. 1991. Thermostabilization of proteins. Biotecimol. Appl. Biochem. 14: 1–11.Google Scholar
  41. Hayashi J. and Shimidzu Y. 1988. Patent IP 01249801 A2 891 005.Google Scholar
  42. Hebeish A. and Waly A. 1978. Preparation of chemically modified cotton via introduction of aromatic amino-groups. J. Appl. Polym. Sci. 22: 2713–2716.Google Scholar
  43. Heinze Th., Rahn K., Jaspers M. and Berghmans H. 1996. p-Toluenesulfonyl esters in cellulose modifications: acylation of remaiiñng hydroxyl groups. Macromol. Chem. Phys. 197: 4207–4224.Google Scholar
  44. Hermanson G. T., Mallia A. K. and Smith P. K. 1992. Immobilized Affinity Ligand Tecimics. Academic Press, Inc., San Diego, California.Google Scholar
  45. Ikeda T., Katasho I., Kamei M. and Senda M. 1984. Electrocatalysis with a glucose-oxidase-immobilized graphite electrode. Agric. Biol. Chem. 48: 1969–1976.Google Scholar
  46. Ishii T. 1986. Facile preparation of deoxyiodocellulose and its conversion into 5, 6-cellulosene. Carbohydr. Res. 154: 63–70.Google Scholar
  47. Karube I. and Yokoyama K. 1993. Trends in biosensor research and development. Sensors Actuators B 13–14: 12–15.Google Scholar
  48. Karube I., Sode K. and Tamiya E. 1990. Microbiosensors for clin-ical analyses. In: Wise D. L. (ed), Bioinstrumentation-Research, Development and Applications. Butterworth, Inc., Boston, Massachusetts.Google Scholar
  49. Kierstan M. P. J. and Coughlan 1985. Immobilisation of cells and enzymes by gel entrapment. In: Woodward J. (ed), Immobilised Cells and Enzymes-A Practical Approach. IRL Press Ltd., Oxford, UK, pp. 39–48.Google Scholar
  50. Klavins M., Zicmanis A. and Prikulis A. 1984. Latv. PSR Zinat. Akad. Vestis Kim. Ser. 3: 336.Google Scholar
  51. Klei H. E., Sundstrom D. W. and Shim D. 1985. Immobilisation of enzymes by micro-encapsulation. In: Woodward J. (ed), Immobilised Cells and Enzymes-A Practical Approach. IRL Press Ltd., Oxford, UK, pp. 49–54.Google Scholar
  52. Li J.-ni, Du Y. ke, Boullanger P. and Jiang L. 1999. Thefolding and enzymatic activity of glucose oxidase in the glycolipid matrix of different charges. Thin Solid Films 352: 213–217.Google Scholar
  53. Malikkides C. O. and Weiland R. H. 1982. On the mechanism of immobilized glucose oxidase deactivation by hydrogen perox-ide. Biotechnol. Bioeng. 24: 2419–2439.Google Scholar
  54. Mannhalter Ch. 1993. Biocompatihility of artificial surfaces such as cellulose and related materials. Sensors Actuators B 11: 273–279.Google Scholar
  55. March W. F. 1990. Glucose biosensors. In: Wise D. L. (ed), Bioinstrnmentation-Research, Development and Applications. Butterworth, Inc., Boston, Massachusetts.Google Scholar
  56. McCormick C. L. and Callais P. A. 1987. Derivatization of cellulose in lithiumchloride and N, N-dimethylacetamide solutions. Polymer 28: 2317–2323.Google Scholar
  57. McCormick C. L., Dawsey T. R. and Newman J. K. 1990. Competitive formation of cellulose-p-toluenesulfonate and chlorodeoxycellulose during homogeneous reaction of p-toluene-sulfonyl chloride with cellulose in N, N-dimethylace-tamide-lithium chloride. Carbohydr. Res. 208: 183–190.Google Scholar
  58. Mikkelsen S. R. and Lennox R. B. 1991. Rotating disk electrode characterization of immobilized glucose oxidase. Anal. Biochem. 195: 358–363.PubMedGoogle Scholar
  59. Mizutari F. and Asai M. 1990. Trends in enzyme sensors. In: Wise D. L. (ed), Bioinstrumentation-Research, Development and Applications. Butterworth, Inc., Boston, Massachusetts.Google Scholar
  60. Mosbach K. 1988. Immobilized enzymes and cells. In: Colowick S. P. and Kaplan N. O. (eds.), Methods in Enzymology, Vol. 137. Academic Press, Inc., San Diego, California.Google Scholar
  61. Nakamura S., Amano M., Saegusa Y. and Sato T. 1992. Preparation of aminoallcyl cellulose and their adsorption and resorption of heavy-metal ions. J. Appl. Polym. Sci. 45: 265–271.Google Scholar
  62. Ngo T. T., Ivy J. and Lenhoff H. M. 1980. Polyethylene beads as supports for enzyme immobilization. Biotechnol. Lett. 2: 429–434.Google Scholar
  63. Nilsson K. G. I. and Mandethus C. F. 1994. A carbohydrate bio-sensor surface for the detection of uropathogenic bacteria. BioTechnology 12: 1376–1378.PubMedGoogle Scholar
  64. Ohba R., Shibata T. and Ueda 5. 1979. Preparation and properties of covalently immobilized beta-amylase on para aminobenzyl-cellulose. J. Ferment. Technol. 57: 146–150.Google Scholar
  65. Palmisano F., de Santis A., Tantfflo G., Voloicella T. and Zambonin P. G. 1997. Microbial detection by a glucose biosensor coupled to a microdialysis fibre. Analyst 122: 1125–1128.PubMedGoogle Scholar
  66. Pazur J. H., Knull H. R. and Simpson L. 1970. Glycoenzymes: A note on the role for the carbohydrate moieties. Biochem. Biophys. Res. Commun. 40: 110–115.PubMedGoogle Scholar
  67. Pyun J. C., Jang A. S. and Park J. S. 1996. Facile enzyme immobili-zation and assay techthque using polyethyleneimine-cellulose thin-layer chromatography as a solid support. Enzyme Microb. Technol. 18: 41–44.Google Scholar
  68. Racek J. 1991. A yeast biosensor for glucose determination. Appl. Microbiol. Biotechnol. 34: 473–477.PubMedGoogle Scholar
  69. Rahn K., Diamantoglou M., Klemm D., Berghmans H. and Heinze Th. 1996. Homogeneous synthesis of cellulose-p-toluenesulfonates in N, N-dimethylacetamide/LiCI solvent system. Angew. Makromol. Chem. 238: 143–163.Google Scholar
  70. Rieseler R. 2001. Analyt-sensitive Nanostrnktur-Schichten fur die Biosensor-Entwicklung auf funktionalisierter Aminocellulosen-und SiOx-Polymerbasis. Dissertation Thesis, Forschungszentrnm Jiilich and RWTH Aachen, Germany.Google Scholar
  71. Sansubrino A. and Masciri M. 1994. Development of an optical fiber sensor for ammonia, urease and IgG. Biosens. Bioelectron. 9: 207–216.PubMedGoogle Scholar
  72. Scouton W. H. 1987. A survey of enzyme coupling techniques. In: Mosbach K. V. (ed.), Methods in Enzymology, Vol. 135: Immobilized Enzymes and Cells Part B. Academic Press Inc., San Diego, California.Google Scholar
  73. Senda M. and Ikeda T. 1990. Biocatalyst electrodes and their capabilities for sensors and reactors. In: Wise D. L. (ed.), Bioinstrumentation-Research, Development and Applications. Butterworth, Inc., Boston, Massachusetts.Google Scholar
  74. Simionescu C. I., Dimitriu S., Popa M. I. and Denisova L. 1985. Antibiotics immobilized on polysaccharides. Makromol. Chem. Suppl. 9, 179–187.Google Scholar
  75. Steinberg R., Bindra D. S., Wilson G. S. and Thevenot D. R. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 60: 2781–2788.PubMedGoogle Scholar
  76. Subramarian A., Kennel S. J., Oden P. 1., Jacobson K. B., Woodward J. and Doktycz M. J. 1999. Comparisonoftechthques for enzyme immobilization on silicon supports. Enzyme Microb. Technol. 24: 26–34.Google Scholar
  77. Tang L. X. and Vadgama P. M. 1990. Use of membrane techthque for optimization of enzyme electrodes. In: Wise D. L. (ed.), Bioinstrumentation-Research, Development and Applications. Butterworth, Inc., Boston, Massachusetts.Google Scholar
  78. Teshirogi T., Yamamoto H., Sakmoto M. and Tonami H. 1979. Sen-i Gakkaishi 35: T-525.Google Scholar
  79. Tifier J. 1999. Mai3geschneiderte Aminocellulosederivate zum Aufbau supramolekularer Cellulosearchitekturen mit Analyt-Erkennungsfunktion und optischer Signalgruppe. Dissertation Thesis, Forschungszentrnm Jiilich and Friedrich-Schiller-Universitat Jena, Germany.Google Scholar
  80. Tifier J., Berlin P. and Klemm D. 1999a. Soluble and film-forming cellulose derivates with redoxchromogethc and enzyme immo-bilizing 1, 4-phenylendiamine groups. Macromol. Chem. Phys. 200: 1–9.Google Scholar
  81. Tifier J., Berlin P. and Klemm D. 1999b. A novel efficient enzyme immobilization on NH2 polymers by means of L-ascorbic acid. Biotechnol. Appl. Biochem. 30: 155–162.PubMedGoogle Scholar
  82. Tifier J., Berlin P. and Klemm D. 2000. Novel matrices for bio-sensor applications by strnctural design of redox-chromogenic aminocellulose esters. J. Appl. Polym. Sci. 75: 904–915.Google Scholar
  83. Tifier J., Klemm D. and Berlin P. 2001. Designed aliphatic amino-cellulose derivatives as transparent and functionalized coatings for enzyme immobilization. Design Monom. Polym. 4: 315–328.Google Scholar
  84. Tifier J., Rieseler R., Berlin P. and Klemm D. 2002. Stabilization of activity of oxido-reductases by their immobilization onto spe-cial functionalized glass and novel aminocellulose films using different coupling reagents. Biomacromolecules 3: 1021–1029.PubMedGoogle Scholar
  85. Tokar O., Novak J. and Strakova V. 1981. Patent CS 223 256 B 86015. Chem. Abstr. 1986, 105, 81016w.Google Scholar
  86. Towe P. C., Guilbeau E. J. and Coburn J. B. 1996. Invivo andinvitro deactivation rates of PTFE-coupled glucose oxidase. Biosens. Bioelectr. 11: 791–798.Google Scholar
  87. Tsuchida T. and Yoda K. 1983. Multi-enzyme membrane electrodes for determination of creatiiñne and creatine in scram. Chin. Chem. 29: 51–55.Google Scholar
  88. Tsuchida T. and Yoda K. 1981. Immobilization of D-glucose oxi-dase onto a hydrogen peroxide permselective membrane and application for an enzyme electrode. Enzyme Microb. Technol. 3: 326–330.Google Scholar
  89. Tsukamoto T., Nomura H., Morota S. and Okada 1. 1983. Kinetic studies on the oxidation of glucose by immobilized glucose oxidase. Chem. Phaim. Buli. 31: 3377–3384.Google Scholar
  90. Ulman A. 1991. An Introduction to Ultrathin Organic Films, LB Films in Sensors. Academic Press Inc., San Diego, California, p. 382.Google Scholar
  91. Ugarova N. N., Brovko Y. and Beiaieva Z Ed. 1983. Immobilization of luciferase from the firefly Luciola iningrelica: catalytic properties and thermostability of the enzyme immobilized on cellulose films. Enzyme Microb. Technol. 5: 60–65.Google Scholar
  92. Urban G. 1999. Microstnicturing of organic layers for microsys-tems. Sensors Actuators 74: 219–224.Google Scholar
  93. Valentova O., Marek M., Svec F., Stamberg J. and Vondrazka Z. 1981. Comparison of different methods of glucose-oxidase immobilization. Biotechnol. Bioeng. 23: 2093–2104.Google Scholar
  94. Vaima A. J. and Chavan V. B. 1994. Cellulosic diamines as reaction-incorporated fillers in epoxy composites. Cellulose 1: 215–219.Google Scholar
  95. Vegamd G. and Christensen T. B. 1975. Glycosylation of proteins-new method of enzyme stabilization. Biotechnol. Bioeng. 17: 1391–1397.PubMedGoogle Scholar
  96. Vrbova E. and Marek M. 1990. Application of the Ugi reaction for the preparation of enzyme electrodes. Anal. Chim. Acta 239: 263–268.Google Scholar
  97. Weigl B. H., Holobar A., Rodriges N. Y. and Wolfbeis 0. 1993. Robust carbon dioxide optrode based on covalently immobilized pH indicator. SPIE 2068: 22ff.Google Scholar
  98. Wolfbeis O. S. 1991. Fiber Optic Chemical Sensors and Biosensors. Vol. 1 and 2, CRC Press, Inc., Boston, Massachusetts.Google Scholar
  99. Woodward J. 1985. Immobilised enzymes: adsorption and covalent coupling. In: Woodward J. (ed), Immobiised Cells and Enzymes-A Practical Approach. IRL Press Ltd., Oxford, UK, pp. 3–17.Google Scholar
  100. Wykes J. R., Dumñl P. and Lffly M. D. 1971. Immobiisation of alpha-amylase by attachment to soluble support materials. Biochim. Biophys. Acta 250: 522–529.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • P. Berlin
    • 1
  • D. Klemm
    • 2
  • A. Jung
    • 1
  • H. Liebegott
    • 2
  • R. Rieseler
    • 1
  • J. Tiller
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbH, ISG-2JülichGermany
  2. 2.Institut für Organische Chemie und Makromolekulare ChemieFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations