Skip to main content
Log in

Hydrogen assisted oxygen desorption from the V2O5(010) surface

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Vanadium oxide surfaces are well known to play an active role as catalysts in hydrocarbon oxidation reactions where oxygen from different surface sites participates in the reaction. Due to the ubiquity of hydrogen in these systems, reaction steps involving (temporary) hydrogenation are possible and may influence the overall reaction scheme. This work examines structural and energetic consequences of hydrogen interacting with different oxygen sites at the V2O5(010) surface where the local surface environment is modeled by embedded clusters. The electronic structure and equilibrium geometries of the clusters are obtained by density functional theory (DFT) using gradient corrected functionals (RPBE) for exchange and correlation. Hydrogen is found to stabilize preferentially near oxygen sites forming surface OH and H2O species with binding energies of 0.5–2.3 eV per H atom depending on the site and species. Hydrogen adsorption weakens the binding of the surface oxygen with its vanadium neighbors considerably where the weakening is larger for H2O than for OH formation as evidenced by bond order analyses and results of the binding energetics. Thus, the studies suggest strongly that the presence of hydrogen at the oxide surface facilitates oxygen removal and, therefore, contributes to the enhanced yield of oxygenated products near vanadia based surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K. Kung, in: Transition Metal Oxides: Surface Chemistry and Catalysis, Studies in Surface Science and Catalysis, Vol. 45, eds. B. Delmon and J.T. Yates (Elsevier, Amsterdam, 1989).

    Google Scholar 

  2. A. Bielanski and J. Haber, Oxygen in Catalysis (Dekker, New York, 1990).

    Google Scholar 

  3. V.E. Henrich and P.A. Cox, The Surface Science of Metal Oxides (University Press, Cambridge, 1994).

    Google Scholar 

  4. C.N.R. Rao and B. Raven, Transition Metal Oxides (VCH, New York, 1995).

    Google Scholar 

  5. E.E. Chain, Appl. Opt. 30 (1991) 2782, and references therein.

    Article  CAS  Google Scholar 

  6. B. Grzybowska-Swierkosz, F. Trifirò and J.C. Vedrine, J. Appl. Catal. 157 (1997) 1, and references therein.

    Article  CAS  Google Scholar 

  7. H.-J. Freund, private communication.

  8. V. Eyert, in: Density Functional Methods: Applications in Chemistry and Materials Science, ed. M. Springborg (Wiley, Chichester, 1997), and references therein.

    Google Scholar 

  9. V. Eyert and K.-H. Höck, Phys. Rev. B 57 (1998) 12727.

    Article  CAS  Google Scholar 

  10. X. Yin, A. Fahmi, A. Endou, R. Miura, I. Gunji, R. Yamauchi, M. Kubo, A. Chatterjee and A. Miyamoto, Appl. Surf. Sci. 130–132 (1998) 539.

    Article  Google Scholar 

  11. A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner and M. Petersen, Phys. Rev. B 50 (1999) 10583.

    Article  Google Scholar 

  12. K. Hermann, M. Witko, R. Druzinic, A. Chakrabarti, B. Tepper, M. Elsner, A. Gorschlüter, H. Kuhlenbeck and H.-J. Freund, J. Electron. Spectrosc. Relat. Phenom. 98/99 (1999) 245.

    Article  Google Scholar 

  13. K. Hermann, A. Chakrabarti, R. Druzinic and M. Witko, Phys. Status Solidi 173 (1999) 195

    Article  CAS  Google Scholar 

  14. M. Witko, R. Tokarz and J. Haber, J. Mol. Catal. 66 (1991) 205, 357.

    Article  CAS  Google Scholar 

  15. M. Witko and K. Hermann, J. Mol. Catal. 81 (1993) 279.

    Article  CAS  Google Scholar 

  16. M. Witko and K. Hermann, in: Studies in Surface Science and Catalysis, Vol. 82, eds. V.C. Corberàn and S.V. Bellon (Elsevier, Amsterdam, 1994) p. 75.

    Google Scholar 

  17. M. Witko, K. Hermann and R. Tokarz, J. Electron. Spectrosc. Relat. Phenom. 69 (1994) 89.

    CAS  Google Scholar 

  18. M. Witko, Catal. Today 32 (1996) 89.

    Article  CAS  Google Scholar 

  19. K. Hermann, A. Michalak and M. Witko, Catal. Today 32 (1996) 321.

    Article  CAS  Google Scholar 

  20. M. Witko, R. Tokarz and J. Haber, J. Appl. Catal. A 157 (1997) 23.

    Article  CAS  Google Scholar 

  21. A. Michalak, M. Witko and K. Hermann, Surf. Sci. 375 (1997) 385.

    Article  CAS  Google Scholar 

  22. M. Witko, R. Tokarz and K. Hermann, Polish J. Chem. 72 (1998) 1565.

    CAS  Google Scholar 

  23. M. Witko, K. Hermann und R. Tokarz, Catal. Today 50 (1998) 553.

    Article  Google Scholar 

  24. K. Hermann, M. Witko and R. Druzinic, Faraday Discuss. 114, in press.

  25. A. Byström, K.A. Wilhelmi and O. Brotzen, Acta Chem. Scand. 4 (1950) 1119.

    Article  Google Scholar 

  26. L. Kihlborg, Arkiv Kemi 21 (1963) 357.

    CAS  Google Scholar 

  27. R.W.G. Wyckoff, Crystal Structures (Wiley, New York, 1965).

    Google Scholar 

  28. H. Hanke, R. Bunert and H.G. Jetschewitz, Z. Anorg. Allg. Chem. 109 (1975) 414.

    Google Scholar 

  29. H.G. Bachman, F.R. Ahmed and W.H. Barnes, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 115 (1961) 110.

    Google Scholar 

  30. A. Michalak, M. Witko and K. Hermann, Surf. Sci. 375 (1997) 385.

    Article  CAS  Google Scholar 

  31. R. Druzinic, Ph.D. thesis, Free University Berlin (2000).

  32. J.K. Labanowski and J.W. Anzelm, eds., Density Functional Methods in Chemistry (Springer, New York 1991).

    Google Scholar 

  33. N. Godbout, D.R. Salahub, J. Andzelm and E. Wimmer, Canad. J. Phys. 70 (1992) 560.

    Article  CAS  Google Scholar 

  34. S.H. Vosko, L. Wilk and M. Nusair, Canad. J. Phys. 58 (1980) 1200.

    Article  CAS  Google Scholar 

  35. J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

    Article  CAS  Google Scholar 

  36. B. Hammer, L.B. Hansen and J.K. Nørskov, Phys. Rev. B 59 (1999) 7413.

    Article  Google Scholar 

  37. R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833, 1841, 2388, 2343.

    Article  CAS  Google Scholar 

  38. I. Mayer, Chem. Phys. Lett. 97 (1983) 270.

    Article  CAS  Google Scholar 

  39. I. Mayer, J. Mol. Struct. (Theochem) 149 (1987) 81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, K., Witko, M., Druzinic, R. et al. Hydrogen assisted oxygen desorption from the V2O5(010) surface. Topics in Catalysis 11, 67–75 (2000). https://doi.org/10.1023/A:1027206705195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027206705195

Navigation