Foundations of Physics

, Volume 30, Issue 10, pp 1807–1816 | Cite as

On d-Fuzzy Functions in d-Algebras

  • J. Neggers
  • A. Dvurečenskij
  • Hee Sik Kim


In this paper we introduce the concept of d-fuzzy function which generalizes the concept of fuzzy subalgebra to a much larger class of functions in a natural way. In addition we discuss a method of fuzzification of a wide class of algebraic systems onto [0, 1] along with some consequences.


Large Class Wide Class Algebraic System Fuzzy Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DvGr]
    A. Dvurecenskij and M. G. Graziano, “Commutative BCK-algebras and lattice ordered groups,” Math. Japonica 32, 227–246 (1999).Google Scholar
  2. [FRT]
    J. M. Font, A. J. Rodrígez, and A. Torrens, “Wajsberg algebras,” Stochastica 8, 5–31 (1984).Google Scholar
  3. [HL1]
    Q. P. Hu and X. Li, “On BCH-algebras,” Math. Seminar Notes 11, 313–320 (1983).Google Scholar
  4. [HL2]
    Q. P. Hu and X. Li, “On proper BCH-algebras,” Math. Japonica 30, 659–661 (1985).Google Scholar
  5. [Hoo]
    C. S. Hoo, “Unitary extensions of MV and BCK-algebras,” Math. Japonica 37, 585-590.Google Scholar
  6. [Is]
    K. Iséki, “On BCI-algebras,” Math. Seminar Notes 8, 125–130 (1980).Google Scholar
  7. [IsTa]
    K. Iséki and S. Tanaka, “An introduction to theory of BCK-algebras,” Math. Japonica 23, 1–26 (1978).Google Scholar
  8. [JKK]
    Y. B. Jun, J. Y. Kim, and H. S. Kim, “BCK-algebras inherited from the posets,” Math. Japonica 45, 119–123 (1997).Google Scholar
  9. [JNK]
    Y. B. Jun, J. N. and H. S. Kim, “On fuzzy -d-ideals in d-algebras,” submitted.Google Scholar
  10. [LK]
    Y. C. Lee and H. S. Kim, “On d-subalgebras of d-transitive d*-algebras,” Math. Slovaca 49, 27–33 (1999).Google Scholar
  11. [Me]
    J. Meng, “Implicative commutative semigroups are equivalent to a class of BCK- algebras,” Semigroup Forum 50, 89–96 (1995).Google Scholar
  12. [MeJu]
    J. Meng and Y. B. Jun, BCK-algebras (Kyung Moon Sa, Seoul, 1994).Google Scholar
  13. [Mun]
    D. Mundici, “MV-algebras are categorically equivalent to bounded commutative BCK-algebras,” Math. Japonica 31, 889–894 (1986).Google Scholar
  14. [NJK]
    J. Neggers, Y. B. Jun, and H. S. Kim, “On d-ideals in d-algebras,” Math. Slovaca 49, 243–251 (1999).Google Scholar
  15. [NK]
    J. Neggers and H. S. Kim, “On d-algebras,” Math. Slovaca 49, 19–26 (1999).Google Scholar
  16. [Ta1]
    S. Tanaka, “A new class of algebras,” Math. Seminar Notes 3, 37–43 (1975).Google Scholar
  17. [Ta2]
    S. Tanaka, “Examples of BCK-algebras,” Math. Seminar Notes 3, 75–82 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • J. Neggers
    • 1
  • A. Dvurečenskij
    • 2
  • Hee Sik Kim
    • 3
  1. 1.Department of MathematicsUniversity of AlabamaTuscaloosaU.S.A.
  2. 2.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Department of MathematicsHanyang University SeoulKorea

Personalised recommendations