Advertisement

Foundations of Physics

, Volume 30, Issue 9, pp 1525–1538 | Cite as

On Time Asymmetry and History in an Everett Quantum World

  • Federico Laudisa
Article
  • 78 Downloads

Abstract

It is usually held that the standard collapse model of a quantum measurement process grounds a kind of fundamental time asymmetry. The question whether and how it should be possible to reconstruct uniquely one's own history in an Everett no-collapse interpretation of quantum theory is investigated. A particular approach to the Everett interpretation, due to John S. Bell, is considered, according to which one of the chief claims of the Everett quantum theory is precisely that it allows us to do without the notion of history.

Keywords

Quantum Theory Measurement Process Quantum Measurement Quantum World Collapse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev. B 134, 1410 (1964).Google Scholar
  2. 2.
    D. Albert and B. Loewer, Synthese 77, 195 (1988).Google Scholar
  3. 4.
    J. A. Barrett, The Monist 80, 70 (1997).Google Scholar
  4. 5.
    J. S. Bell, “The measurement theory of Everett and de Broglie's pilot wave,” in Quantum Mechanics, Determinism, Causality and Particles, M. Flato et al., eds. (Reidel, Dordrecht, 1976), pp. 11–17; reprinted in Ref. 7, pp. 93–99.Google Scholar
  5. 6.
    J. S. Bell, “Quantum mechanics for cosmologists,” in Quantum Gravity 2, C. Isham, R. Penrose, and D. Sciama, eds. (Clarendon, Oxford, 1981), reprinted in Ref. 7, pp. 117–138.Google Scholar
  6. 7.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  7. 8.
    B. Bläsi and L. Hardy, Phys. Lett. A 207, 119 (1995).Google Scholar
  8. 9.
    D. Bohm and B. Hiley, The Undivided Universe (Routledge, London, 1993).Google Scholar
  9. 10.
    B. S. De Witt, “The many-universes interpretation of quantum mechanics,” in Foundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic, New York, 1971); reprinted in Ref. 11, pp. 167–218.Google Scholar
  10. 11.
    D. Deutsch, The Fabric of Reality (Renguin, 1997).Google Scholar
  11. 13.
    M. Dorato, Phil. Sci. 63, 585 (1996).Google Scholar
  12. 14.
    B. d'Espagnat, Conceptual Foundations of Quantum Mechanics, 2nd edn. (Addison-Wesley, Reading, MA, 1976).Google Scholar
  13. 15.
    H. Everett, “Theory of the universal wave function,” (1973); reprinted in Ref. 11, pp. 3–140.Google Scholar
  14. 17.
    R. Healey, Nous 18, 591 (1984).Google Scholar
  15. 18.
    R. Healey, The Philosophy of Quantum Mechanics (Cambridge University Press, Cambridge, 1989).Google Scholar
  16. 19.
    A. Kent, Internat. J. Mod. Phys. A 5, 1745 (1990).Google Scholar
  17. 20.
    A. Peres, Phys. Lett. A 194, 21 (1994).Google Scholar
  18. 21.
    E. J. Squires, Found. Phys. Lett. 5, 279 (1992).Google Scholar
  19. 22.
    H. D. Zeh, The Physical Basis of the Direction of Time (Springer, Berlin, 1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Federico Laudisa
    • 1
  1. 1.Dipartimento di FilosofiaUniversità di FirenzeFirenzeItaly

Personalised recommendations