Skip to main content
Log in

Pluriharmonic Maps, Loop Groups and Twistor Theory

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider pluriharmonic maps φ from simply connected complexmanifolds M to compact symmetric spaces G/K. Following [11]we introduce the loop parameter – and thus the associated familyof φ – in a geometric fashion. We define an extended framingglobally on M, but with values in Λ/K, whereΛ denotes a loop group associated with G. Locally we obtain adescription of pluriharmonic maps via normalized potentials similar tothat of Dorfmeister, Petit and Wu. For dimM > 1 thesepotentials satisfy a `curved flat' condition and they characterizepluriharmonic maps. We also briefly discuss the dressing action on theset of pluriharmonic maps. Finally, as special cases of the generaltheory, we discuss the isotropic case and pluriharmonic maps into Liegroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant, R.: Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential Geom. 17 (1982), 45–473.

    Google Scholar 

  2. Burstall, F. E.: Private communication.

  3. Burstall, F. E., Eschenburg, J.-H., Ferreira, M. J. and Tribuzy, R.: Kähler submanifolds with parallel pluri-mean curvature, Preprint, math.DG/0111217, 2001.

  4. Burstall, F. E. and Guest, M. A.: Harmonic two-spheres in compact symmetric spaces, Math. Ann. 309 (1997) 54–557.

    Google Scholar 

  5. Burstall, F. E. and Rawnsley, J. H.: Twistor Theory for Riemannian Symmetric Spaces, Lecture Notes in Math. 1424, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  6. E. Calabi, E.: Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 11–125.

    Google Scholar 

  7. Chi, Q.-S., Fernandez, L. and Wu, H.: Normalized potentials of minimal surfaces in spheres, Nagoya Math. J. 156 (1999), 18–214.

    Google Scholar 

  8. Dorfmeister, J., Pedit, F. and Wu, H.: Weierstrass type representations of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 63–668.

    Google Scholar 

  9. Erdem, S. and Wood, J. C.: On the construction of harmonic maps into a Grassmannian, J. London Math. Soc. (2) 28 (1983), 16–174.

    Google Scholar 

  10. Eschenburg, J.-H. and Tribuzy, R.: Existence and uniqueness of maps into affine homogeneous spaces, Rend. Sem. Mat. Univ. Padova 89, 1–18.

  11. Eschenburg, J.-H. and Tribuzy, R.: Associated families of pluriharmonic maps and isotropy, Manuscripta Math. 95 (1998), 29–310.

    Google Scholar 

  12. Ferus, D. and Pedit, F.: Curved flats in symmetric spaces, Manuscripta Math. 91 (1996), 44–454.

    Google Scholar 

  13. Guest, M.: Harmonic Maps, Loop Groups, and Integrable Systems, Cambridge Univ. Press, Cambridge, 1997.

    Google Scholar 

  14. Guest, M.: An update on harmonic maps of finite uniton number, via the zero curvature equation, in: M. Guest, R. Miyaoka and Y. Ohnita (eds), Integrable Systems, Topology, and Physics, Contemp. Math. 309, Amer. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  15. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  16. McIntosh, I.: Global solutions of the elliptic 2D periodic Toda lattice, Nonlinearity 7 (1994), 8–108.

    Google Scholar 

  17. Ohnita, Y.: Harmonic maps into symmetric spaces and integrable system theory, in: Proceedings of the Conference ‘Theory of Lie Groups and Manifolds’, Sophia Kokyuroku in Mathematics 45, 2002, pp. 8–98.

  18. Ohnita, Y. and Udagawa, S.: Harmonic maps of finite type into generalized flag manifolds and twistor fibrations, in: Differential Geometry and Integrable Systems, Proceedings of the 9th MSJ-IRI Tokyo 2000, Contemp. Math. 308, Amer. Math. Soc., Providence, NJ, 2002, pp. 24–270.

    Google Scholar 

  19. Ohnita, Y. and Valli, G.: Pluriharmonic maps into compact Lie groups and factorization into unitons, Proc. London Math. Soc. 61 (1990), 54–570.

    Google Scholar 

  20. Pohlmeyer, K.: Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 20–221.

    Google Scholar 

  21. Pressley, A. and Segal, G.: Loop Groups, Oxford Science Publications, Clarendon Press, Oxford, 1986.

    Google Scholar 

  22. Uhlenbeck, K.: Harmonic maps into Lie groups (classical solutions of the chiral model), J. Differential Geom. 30 (1989), –50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorfmeister, J., Eschenburg, JH. Pluriharmonic Maps, Loop Groups and Twistor Theory. Annals of Global Analysis and Geometry 24, 301–321 (2003). https://doi.org/10.1023/A:1026225029745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026225029745

Navigation