Siberian Mathematical Journal

, Volume 44, Issue 5, pp 877–882 | Cite as

The Phase Space of One Generalized Model by Oskolkov

  • G. A. Sviridyuk
  • V. O. Kazak


We demonstrate that the phase space of the Cauchy–Dirichlet problem for the equation u t -κΔu t =νΔu-K(u)+f is a simple Banach C-manifold.

semilinear equation of Sobolev type phase space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oskolkov A. P., “On unstable flows of viscoelastic fluids,” Trudy MIAN SSSR, 159, 103–131 (1983).Google Scholar
  2. 2.
    Kotsiolis A. A., Oskolkov A. P., and Shadiev R. D., “Nonlocal problems for a class of nonlinear dissipative equations of Sobolev type,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 199, 91–113 (1992).Google Scholar
  3. 3.
    Vo?tkunski? Ya. I., Amfilokhiev V. B., and Khodorkovski? Ya. S., “The equations of motion of a fluid with relaxation properties,” Trudy Leningrad. Korablestroitel. Inst., 69, 16–24 (1970).Google Scholar
  4. 4.
    Coleman B. D., Duffin R. J., and Mizel V. J., “Instability, uniqueness, and nonexistence theorems for the equation u t = u xx-u xtx on a strip,” Arch. Rational Mech. Anal., 19, 100–116 (1965).Google Scholar
  5. 5.
    Sviridyuk G. A. and Sukachëva T. G., “Phase spaces for a class of semilinear equations of Sobolev type,” Differentsial?nye Uravneniya, 26, No. 2, 250–258 (1990).Google Scholar
  6. 6.
    Sviridyuk G. A., “The Cauchy problem for a singular linear operator equation of Sobolev type,” Differentsial'nye Uravneniya, 23, No. 12, 2169–171 (1987).Google Scholar
  7. 7.
    Demidenko G. V. and Uspenski? S. V., Equations and Systems That Are Not Solved with Respect to the Higher Derivative [in Russian], Nauchnaya Kniga, Novosibirsk (1998).Google Scholar
  8. 8.
    Favini A. and Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York; Basel; Hong Kong (1999).Google Scholar
  9. 9.
    Egorov I. E., Pyatkov S. G., and Popov S. V., Nonclassical Operator-Differential Equations [in Russian], Nauka, Novosibirsk (2000).Google Scholar
  10. 10.
    Sviridyuk G. A., “To the general theory of operator semigroups,” Uspekhi Mat. Nauk, 49, No. 4, 47–74 (1994).Google Scholar
  11. 11.
    Fëdorov V. E., “Degenerate strongly continuous semigroups of operators,” Algebra i Analiz, 12, No. 3, 173–200 (2000).Google Scholar
  12. 12.
    Sviridyuk G. A., “Quasistationary trajectories of semilinear dynamical equations of Sobolev type,” Izv. Ross. Akad. Nauk Ser. Mat., 57, No. 3, 192–207 (1993).Google Scholar
  13. 13.
    Sviridyuk G. A. and Sukacheva T. G., “The Cauchy problem for one class of semilinear equations of Sobolev type,” Sibirsk. Mat. Zh., 31, No. 5, 101–119 (1990).Google Scholar
  14. 14.
    Sviridyuk G. A. and Yakupov M. M., “The phase space of an initial-boundary problem for the Oskolkov system,” Diffrentsial'nye Uravneniya, 32, No. 11, 1538–1543 (1996).Google Scholar
  15. 15.
    Sviridyuk G. A. and Kazak V. O., “The phase space for an initial-boundary problem of the Hoff equation,” Mat. Zametki, 71, No. 2, 292–297 (2002).Google Scholar
  16. 16.
    Lang S., Introduction to Differentiable Manifolds [Russian translation], Platon, Volgograd (1996).Google Scholar
  17. 17.
    Hassard B. D., Kazarinoff N. D., and Wan Y. H., Theory and Applications of a Bifurcation Generating a Cycle [Russian translation], Mir, Moscow (1985).Google Scholar
  18. 18.
    Gajewski H., Gröger K., and Zacharias K., Nonlinear Operator Equations and Operator Differential Equations [Russian translation], Mir, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • G. A. Sviridyuk
    • 1
  • V. O. Kazak
    • 1
  1. 1.Chelyabinsk State UniversityRussia

Personalised recommendations