Skip to main content
Log in

Characterizing Quantum Theory in Terms of Information-Theoretic Constraints

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that three fundamental information-theoretic constraints—the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment—suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining open question about nonlocality and bit commitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Aspect, J. Dalibard, and G. Roger, “Experimental tests of Bell's inequalities using time-varying analyzers”, Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  2. A. Arageorgis, J. Earman, and L. Ruetsche, “Weyling the time away: The non-unitary implementability of quantum field dynamics on curved space-time”, Stud. Hist. Philos. Modern Phys. 33, 151–184 (2002).

    Google Scholar 

  3. G. Bacciagaluppi, “Separation theorems and Bell inequalities in algebraic quantum mechanics”, in Symposium on the Foundations of Modern Physics 1993: Quantum Measurement, Irreversibility and the Physics of Information, P. Busch, P. Lahti, and P. Mittelstaedt, eds. (World Scientific, Singapore, 1994), pp. 29–37.

    Google Scholar 

  4. H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, “Non-commuting mixed states cannot be broadcast”, Phys. Rev. Lett. 76, 2318(1996).

    Google Scholar 

  5. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing, ” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179, IEEE, 1984.

  6. P. Bóna, “Extended quantum mechanics”, Acta Phys. Slovaca 50(1), 1–198 (2000).

    Google Scholar 

  7. G. Brassard, comments during discussion at meeting “Quantum foundations in the light of quantum information and cryptography, ” Montreal, May 17–19, 2000.

  8. O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, New York, 1996).

    Google Scholar 

  9. J. Bub, “The quantum bit commitment theorem”, Found. Phys. 31, 735–756 (2001).

    Google Scholar 

  10. P. Busch and J. Singh, “Lüders' theorem for unsharp quantum measurements”, Phys. Lett. A 249, 10–12 (1998).

    Google Scholar 

  11. R. Clifton and H. Halvorson, “Entanglement and open systems in algebraic quantum field theory”, Stud. Hist. Philos. Modern Phys. 32, 1–31 (2001).

    Google Scholar 

  12. R. Clifton and H. Halvorson, “Are Rindler quanta real? Inequivalent particle concepts in quantum field theory”, Brit. J. Philos. Sci. 52, 417–470.

  13. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994).

    Google Scholar 

  14. D. Deutsch, “It from qubit, ” in Science and Ultimate Reality, J. Barrow, P. Davies, and C. Harper, eds. (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  15. D. Dieks, “Communication by EPR devices”, Phys. Lett. A 92(6), 271–271 (1982).

    Google Scholar 

  16. R. Duvenhage, “Recurrence in quantum mechanics”, quant-ph/0202023.

  17. R. Duvenhage, “The nature of information in quantum mechanics”, quant-ph/0203070.

  18. A. Einstein, “What is the theory of relativity. ” First published in The Times, London, November 28, 1919, p. 13. Also published under the title “Time, space and gravitation”, in Optician, The British Optical Journal 58, 187–188 (1919).

    Google Scholar 

  19. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  20. A. Einstein, “Autobiographical notes”, in Albert Einstein: Philosopher-Scientist, (The Library of Living Philosophers, Vol. VII), P. A. Schilpp, ed. (Open Court, La Salle, IL, 1949).

    Google Scholar 

  21. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1973).

    Google Scholar 

  22. M. Florig and S. Summers, “On the statistical independence of algebras of observables”, J. Math. Phys. 38, 1318–1328 (1997).

    Google Scholar 

  23. C. A. Fuchs, “Information gain vs. state disturbance in quantum theory”, Fortschr. Phys. 46(4, 5), 535–565. Reprinted in Quantum Computation: Where Do We Want to Go Tomorrow?, S. L. Braunstein, ed. (Wiley-VCH, Weinheim, 1999), pp. 229–259.

  24. C. A. Fuchs, “Just two nonorthogonal quantum states, ” in Quantum Communication, Computing, and Measurement 2, P. Kumar, G. M. D'Ariano, and O. Hirota, eds. (Kluwer Academic, Dordrecht, 2000), pp. 11–16.

    Google Scholar 

  25. C. A. Fuchs and K. Jacobs, “An information tradeoff relation for finite-strength quantum measurements”, Phys. Rev. A 63, 062305(2001).

    Google Scholar 

  26. W. H. Furry, “A note on the quantum mechanical theory of measurement”, Phys. Rev. 49, 393–399 (1936).

    Google Scholar 

  27. N. Gisin, Helv. Phys. Acta 62, 363–371 (1989).

    Google Scholar 

  28. L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix”, Phys. Lett. A 183, 14–18 (1993).

    Google Scholar 

  29. E. T. Jaynes, “Information theory and statistical mechanics II”, Phys. Rev. 108(2), 171–190 (1957).

    Google Scholar 

  30. R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras (American Mathematical Society, Providence, RI, 1997).

    Google Scholar 

  31. B. O. Koopman, “Hamiltonian systems and transformations in Hilbert space”, Proc. Nat. Acad. Sci. USA 17, 315–318 (1931).

    Google Scholar 

  32. L. J. Landau, “On the violation of Bell's inequality in quantum theory”, Phys. Lett. A 120, 54–56 (1987).

    Google Scholar 

  33. L. J. Landau, “Experimental tests of distributivity”, Lett. Math. Phys. 25, 47–50 (1992).

    Google Scholar 

  34. N. Landsman, Mathematical Topics Between Classical and Quantum Mechanics (Springer, New York, 1998).

    Google Scholar 

  35. H.-K. Lo and H. F. Chau, “Is quantum bit commitment really possible?”, Phys. Rev. Lett. 78, 3410–3413 (1997).

    Google Scholar 

  36. D. Mauro, “On Koopman–von Neumann waves”, quant-ph/0105112.

  37. D. Mayers, “Unconditionally secure quantum bit commitment is impossible”, in Proceedings of the Fourth Workshop on Physics and Computation (New England Complex System Institute, Boston, 1996), pp. 224–228.

    Google Scholar 

  38. D. Mayers, “Unconditionally secure quantum bit commitment is impossible”, Phys. Rev. Lett. 78, 3414–3417 (1997).

    Google Scholar 

  39. A. Petersen, “The philosophy of Niels Bohr”, B. Atom. Sci. 19(7), 8–14 (1963).

    Google Scholar 

  40. R. Powers and E. Størmer, “Free states of the canonical anticommutation relations”, Comm. Math. Phys. 16, 1–33 (1970).

    Google Scholar 

  41. J. Roberts and G. Roepstorff, “Some basic concepts of algebraic quantum theory”, Comm. Math. Phys. 11, 321–338 (1969).

    Google Scholar 

  42. H. Roos, “Independence of local algebras in quantum field theory”, Comm. Math. Phys. 16, 238–246 (1970).

    Google Scholar 

  43. E. Schrödinger, “Discussion of probability relations between separated systems”, Proc. Camb. Philos. Soc. 31, 555–563 (1935).

    Google Scholar 

  44. E. Schrödinger, “Probability relations between separated systems”, Proc. Camb. Philos. Soc. 32, 446–452 (1936).

    Google Scholar 

  45. I. Segal, “Postulates for general quantum mechanics”, Ann. Math. 48, 930–948 (1947).

    Google Scholar 

  46. S. Summers, “On the independence of local algebras in quantum field theory”, Rev. Math. Phys. 2, 201–247 (1990).

    Google Scholar 

  47. J. von Neumann, Ann. Math. 33, 587, 789 (1932).

    Google Scholar 

  48. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature 299, 802–803 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifton, R., Bub, J. & Halvorson, H. Characterizing Quantum Theory in Terms of Information-Theoretic Constraints. Foundations of Physics 33, 1561–1591 (2003). https://doi.org/10.1023/A:1026056716397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026056716397

Navigation