Skip to main content
Log in

Hiding Quantum Data

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recent work has shown how to use the laws of quantum mechanics to keep classical and quantum bits secret in a number of different circumstances. Among the examples are private quantum channels, quantum secret sharing and quantum data hiding. In this paper we show that a method for keeping two classical bits hidden in any such scenario can be used to construct a method for keeping one quantum bit hidden, and vice–versa. In the realm of quantum data hiding, this allows us to construct bipartite and multipartite hiding schemes for qubits from the previously known constructions for hiding bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Boykin and V. Roychowdhury, “Optimal encryption of quantum bits”, LANL e-print quant-ph/0003059.

  2. A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf, “Private quantum channels”, in IEEE Symposium on Foundations of Computer Science (FOCS), pp. 547–553, 2000; LANL e-print quant-ph/0003101.

  3. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret”, Phys. Rev. Lett. 83(3), 648–651 (1999); LANL e-print quant-ph/9901025.

    Google Scholar 

  4. B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, “Hiding bits in Bell states”, Phys. Rev. Lett. 86(25), 5807–5810 (2001); LANL e-print quant-ph/0011042.

    Google Scholar 

  5. D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, “Quantum data hiding”, IEEE Trans. Information Theory 48(3), 580–598 (2002); LANL e-print quant-ph/0103098.

    Google Scholar 

  6. T. Eggeling and R. F. Werner, “Hiding classical data in multi-partite quantum states”, LANL e-print quant-ph/0203004.

  7. C. H. Bennett and S. Wiesner, “Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states”, Phys. Rev. Lett. 69(20), 2881–2884 (1992).

    Google Scholar 

  8. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett. 70, 1895–1899 (1993).

    Google Scholar 

  9. D. Gottesman, “Theory of quantum secret sharing”, Phys. Rev. A 61(4), 042311(2000); LANL e-print quant-ph/9910067.

    Google Scholar 

  10. J. Jamiołkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators”, Rep. Math. Phys. 3(4), 275–278 (1972).

    Google Scholar 

  11. C. E. Shannon, “Communication theory of secrecy systems”, Bell System Tech. J. 28, 656–715 (1949).

    Google Scholar 

  12. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiVincenzo, D.P., Hayden, P. & Terhal, B.M. Hiding Quantum Data. Foundations of Physics 33, 1629–1647 (2003). https://doi.org/10.1023/A:1026013201376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026013201376

Navigation