Advertisement

Siberian Mathematical Journal

, Volume 44, Issue 5, pp 765–773 | Cite as

The Type Number of the Cosymplectic Hypersurfaces of 6-Dimensional Hermitian Submanifolds of the Cayley Algebra

  • M. B. Banaru
Article

Abstract

We study the 6-dimensional oriented submanifolds of the Cayley algebra which are endowed with the Hermitian structure induced by 3-folds vector cross products. We prove that the type number of a cosymplectic hypersurface of a 6-dimensional Hermitian submanifold of the Cayley algebra is at most 3 and that a 6-dimensional Kaehler submanifold of the octave algebra has no cosymplectic hypersurfaces with the type number greater than one.

Cayley algebra Hermitian manifold hypersurface cosymplectic structure type number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg S., “Totally geodesic hypersurfaces of Kaehler manifolds,” Pacific J. Math., 27, No. 2, 275–281 (1968).Google Scholar
  2. 2.
    Tashiro Y., “On contact structure of hypersurfaces in complex manifolds,” Tôhoku Math. J., 15, No. 1, 62–78 (1963).Google Scholar
  3. 3.
    Kirichenko V. F. and Stepanova L. V., “The geometry of hypersurfaces of quasi-Kähler manifolds,” Uspekhi Mat. Nauk, 50, No. 2, 213–214 (1995).Google Scholar
  4. 4.
    Stepanova L. V., The Contact Geometry of Hypersurfaces of Quasi-Kähler Manifolds, Dis. Kand. Fiz.-Mat. Nauk, MGPU, Moscow (1995).Google Scholar
  5. 5.
    Banaru M. B., “On the spectra of most important tensors on 6-dimensional Hermitian submanifolds of Cayley algebra,” in: Recent Problems of the Theory of a Field, KGU-KTs RAN, Kazan', 2000, pp. 18–21.Google Scholar
  6. 6.
    Banaru M., “A note on six-dimensional Hermitian submanifolds of Cayley algebra,” Bul. Stin. Univ. “Politehnica.” Timisoara, 45, No. 2, 17–20 (2000).Google Scholar
  7. 7.
    Banaru M., “Six theorems on six-dimensional Hermitian submanifolds of Cayley algebra,” Bull. Acad. Sci. Rep. Moldova Math., No. 3, 3–10 (2000).Google Scholar
  8. 8.
    Banaru M., “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra,” J. Harbin Inst. Tech., 8, No. 1, 38–40 (2001).Google Scholar
  9. 9.
    Banaru M., “On six-dimensional Hermitian submanifolds of Cayley algebra,” Studia Univ. “Babes-Bolyai” Math. Cluj-Napoca, 46, No. 1, 11–14 (2001).Google Scholar
  10. 10.
    Banaru M., “On six-dimensional G1-submanifolds of Cayley algebra,” Acta Univ. Palacki. Olomuc. Math., 40, 17–21 (2001).Google Scholar
  11. 11.
    Eckmann B., “Stetige losungen linearer gleichungsysteme,” Comm. Math. Helv., 15, 318–339 (1942-1943).Google Scholar
  12. 12.
    Whitehead G., “Note on cross-sections in Stiefel manifolds,” Comm. Math. Helv., 37, 239–245 (1962).Google Scholar
  13. 13.
    Brown R. and Gray A., “Vector cross products,” Comm. Math. Helv., 42, 222–236 (1967).Google Scholar
  14. 14.
    Gray A, “Vector cross products on manifolds,” Trans. Amer. Math. Soc., 141, 465–504 (1969).Google Scholar
  15. 15.
    Calabi E., “Construction and properties of some six-dimensional almost complex manifolds,” Trans. Amer. Math. Soc., 87, 407–438 (1958).Google Scholar
  16. 16.
    Gray A., “Some examples of almost Hermitian manifolds,” Illinois J. Math., 10, 353–366 (1966).Google Scholar
  17. 17.
    Gray A., “Six-dimensional almost complex manifolds defined by means of three folds vector cross products,” Tôhoku Math. J., 21, 614–620 (1969).Google Scholar
  18. 18.
    Yano K. and Sumitomo T., “Differential geometry of hypersurfaces in a Cayley space,” Proc. Roy. Soc. Edinburgh Sect. A66, 216–231 (1962-1964).Google Scholar
  19. 19.
    Kirichenko V. F., “Almost Kähler structures induced by 3-vector products in 6-dimensional submanifolds of Cayley algebra,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 3, 70–75 (1973).Google Scholar
  20. 20.
    Kirichenko V. F., “Classification of Kähler structures induced by 3-vector products in 6-dimensional submanifolds of Cayley algebra,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 32–38 (1980).Google Scholar
  21. 21.
    Kirichenko V. F., “Stability of almost Hermitian structures induced by 3-vector products in 6-dimensional submanifolds of Cayley algebra,” Ukrain. Geom. Sb., 25, 60–68 (1982).Google Scholar
  22. 22.
    Haizhong Li, “The Ricci curvature of totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere,” Bull. Belg. Math. Soc. Simon Stevin, 3, 193–199 (1996).Google Scholar
  23. 23.
    Cho J. T. and Sekigawa K., “Six-dimensional quasi-Kähler manifolds of constant sectional curvature,” Tsukuba J. Math., 22, No.3, 611–627 (1998).Google Scholar
  24. 24.
    Deszcz R., Dillen F., Verstraelen L., and Vrancken L., “Quasi-Einstein totally real submanifolds of nearly-Kähler 6-sphere,” Tôhoku Math. J., 51, No. 4, 461–478 (1999).Google Scholar
  25. 25.
    Kirichenko V. F., “A Hermitian geometry of the six-dimensional symmetry submanifolds of Cayley algebra,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 3, 6–13 (1994).Google Scholar
  26. 26.
    Arsen'eva O. E. and Kirichenko V. F., “Self-dual geometry of generalized Hermitian surfaces,” Mat. Sb., 189, No. 1, 21–44 (1998).Google Scholar
  27. 27.
    Sato T., “An example of an almost Kähler manifold with pointwise constant holomorphic sectional curvature,” Tokyo J. Math., 23, No. 2, 387–401 (2000).Google Scholar
  28. 28.
    Banaru M. B., “The Kirichenko tensors,” in: Studies of Boundary-Value Problems of Complex Analysis and Differential Equations [in Russian], Smolensk, 2000, No. 2, pp. 42–48.Google Scholar
  29. 29.
    Lichnérowicz A., Global Theory of Connections and Holonomy Groups [Russian translation], Izdat. Inostr. Lit., Moscow (1960).Google Scholar
  30. 30.
    Cartan É., Riemannian Geometry in an Orthogonal Frame [Russian translation], Moscow Univ., Moscow (1960).Google Scholar
  31. 31.
    Blair D. E., “The theory of quasi-Sasakian structures,” J. Differential Geom., 1, 331–345 (1967).Google Scholar
  32. 32.
    Kirichenko V. F., “Sur la gèomètrie des variètès approximativement cosymplectiques,” C. R. Acad. Sci. Paris Ser. I, 295, No. 12, 673–676 (1982).Google Scholar
  33. 33.
    Kirichenko V. F., “The methods of the generalized Hermitian geometry in the theory of almost contact manifolds,” in: Problems of Geometry [in Russian], VINITI, Moscow, 1986, Vol. 18, pp. 25–71. (Itogi Nauki i Tekhniki.)Google Scholar
  34. 34.
    Kurihara H. and Takagi R., “A note on the type number of real hypersurfaces in P n (C),” Tsukuba J. Math., 22, 793–802 (1998).Google Scholar
  35. 35.
    Kobayashi Sh. and Nomizu K., Foundations of Differential Geometry. Vol. 1 and 2 [Russian translation], Nauka, Moscow (1981).Google Scholar
  36. 36.
    Takagi R., “On homogeneous real hypersurfaces in a complex projective space,” Osaka J. Math., 10, 495–506 (1973).Google Scholar
  37. 37.
    Takagi R., “Real hypersurfaces in a complex projective space with constant principial curvatures. I, II,” J. Math. Soc. Japan., 27, 45–57, 507-516 (1975).Google Scholar
  38. 38.
    Takagi R., “A class of hypersurfaces with constant principial curvatures in a sphere,” J. Differential Geom., 11, 225–233 (1976).Google Scholar
  39. 39.
    Kim H. S. and Takagi R., “The type number of real hypersurfaces in P n (C),” Tsukuba J. Math., 20, 349–356 (1996).Google Scholar
  40. 40.
    Takagi R, Kim I.-B., and Kim B. H., “The rigidity for real hypersurfaces in a complex projective space,” Tôhoku Math. J., 50, 531–536 (1998).Google Scholar
  41. 41.
    Kurihara H., “On real hypersurfaces in a complex space form,” Math. J. Okayama Univ., 40, 177–186 (1998).Google Scholar
  42. 42.
    Kurihara H., “The type number on real hypersurfaces in a quaternionic space form,” Tsukuba J. Math., 24, 127–132 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. B. Banaru
    • 1
  1. 1.Smolensk Humanitarian UniversityRussia

Personalised recommendations