Siberian Mathematical Journal

, Volume 44, Issue 5, pp 833–844 | Cite as

Asymptotics for Random Walks with Dependent Heavy-Tailed Increments

  • D. A. Korshunov
  • S. Schlegel
  • V. Schmidt


We consider a random walk {Sn} with dependent heavy-tailed increments and negative drift. We study the asymptotics for the tail probability P{sup n S n >x} as x→∞. If the increments of {Sn} are independent then the exact asymptotic behavior of P{sup n S n >x} is well known. We investigate the case in which the increments are given as a one-sided asymptotically stationary linear process. The tail behavior of sup n S n turns out to depend heavily on the coefficients of this linear process.

random walk dependent increment heavy tails subexponential distribution tail asymptotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asmussen S., Henriksen L. Fløe, and Klüppelberg C., “Large claims approximations for risk processes in a Markovian environment,” Stochastic Process. Appl., 54, 29–43 (1994).Google Scholar
  2. 2.
    Asmussen S. and Højgaard B., “Ruin probability approximations for Markov-modulated risk processes with heavy tails,” Theory Random Proc., 2, 96–107 (1996).Google Scholar
  3. 3.
    Asmussen S., Schmidli H., and Schmidt V., “Tail probabilities for non-standard risk and queueing processes with subexponential jumps,” Adv. in Appl. Probab., 31, 422–447 (1999).Google Scholar
  4. 4.
    Baccelli F., Schlegel S., and Schmidt V., “Asymptotics of stochastic networks with subexponential service times,” Queueing Systems Theory Appl., 33, 205–232 (1999).Google Scholar
  5. 5.
    Jelenkovi? P. R. and Lazar A. A., “A network multiplexer with multiple time scale and subexponential arrivals,” in: Stochastic Networks: Stability and Rare Events, Springer, New York, 1996, pp. 215–235.Google Scholar
  6. 6.
    Mikosch T. and Samorodnitsky G., “The supremum of a negative drift random walk with dependent heavy-tailed steps,” Ann. Appl. Probab., 10, 1025–1064 (2000).Google Scholar
  7. 7.
    Embrechts P. and Veraverbeke N., “Estimates for the probability of ruin with special emphasis on the possibility of large claims,” Insurance Math. Econom., 1, 55–72 (1982).Google Scholar
  8. 8.
    Asmussen S., Ruin Probabilities, World Sci. Publ. Co., Singapore (2000).Google Scholar
  9. 9.
    Embrechts P., Klüppelberg C., and Mikosch T., Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin (1997).Google Scholar
  10. 10.
    Rolski T., Schmidli H., Schmidt V., and Teugels J., Stochastic Processes for Insurance and Finance, John Wiley & Sons, Chichester (1999).Google Scholar
  11. 11.
    Korshunov D., “On the distribution tail of the maxima of a random walk,” Stochastic Process. Appl., 72, 97–103 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • D. A. Korshunov
    • 1
  • S. Schlegel
    • 2
  • V. Schmidt
    • 3
  1. 1.Sobolev Institute of MathematicsNovosibirsk
  2. 2.EindhovenThe Netherlands
  3. 3.University of UlmGermany

Personalised recommendations